
Visualising andAnalysing
Participatory Budgeting Elections

The Binary Budgeteers

Kartheyan Sivalingam & Leon Chipchase & James Harvey

& Ahmed Minhas & Taha Mohyuddin

Supervised by Markus Brill

Abstract

Participatory Budgeting (PB) is a democratic process that offers an alternative to

conventional budgeting, where elected officials select projects to be funded. It al-

lows community members to directly allocate a portion of the public budget toward

projects of their choice. Offering a range of budget allocation rules, each with dif-

ferent fairness, effectiveness and complexity. Through the visual examination and

analysis of voting rules, we facilitate the understanding of intricate voting rules for

non-mathematical or technical users. This consequently shows the increased fairness

and transparency in PB public fund allocation. Specifically, we have developed visual

explanations outlining how the Method of Equal Shares (MES) and Greedy Utilitar-

ian Welfare voting rules select projects. They work on elections of any size, ensuring

they are applicable to past and future PB elections carried out in various municipal-

ities worldwide.

Our solution is publicly available, building upon the existing Pabutools Python li-

brary, a complete set of tools for working with PB instances.

Keywords: Participatory Budgeting, Pabutools, Visualisation, Method of Equal Shares,

Voting Rules, Elections

Acknowledgements

Our sincere appreciation goes out to Markus Brill, our supervisor, who

provided us with invaluable guidance and support throughout the course of

this project. We also thank Simon Rey, our customer, for allowing us to

contribute to Pabutools, and guiding us for the duration of the project.

i

Contents

1 Introduction 1

1.1 Introduction to Participatory Budgeting 1

1.2 Voting Rules . 3

1.2.1 Utilitarian Welfare . 3

1.2.2 Greedy Utilitarian Welfare . 4

1.2.3 Method of Equal Shares . 4

1.2.4 Additional Rules . 7

1.3 Aims and Motivation . 8

1.4 Pabutools . 9

1.4.1 Pabulib . 10

1.5 The Customer . 11

1.6 Our Solution . 12

1.7 Report Overview . 13

2 Literature Review 14

2.1 Origins and Impact of PB . 14

2.2 Voting Rules . 16

2.2.1 Welfare-Maximisation Rules 16

2.2.2 Sequential Purchase Rules . 17

2.3 Visualisation . 18

2.4 Existing Solutions . 20

2.4.1 Pabustats . 20

2.4.2 Pref.tools . 21

ii

2.4.3 Pabuviz . 22

2.4.4 Limitations of Existing Solutions 23

2.5 Conclusion of Literature Review . 24

3 Requirements 26

3.1 Objectives . 26

3.2 Requirements . 27

3.2.1 Functional Requirements . 28

3.2.2 Non Functional Requirements 30

3.3 Testing Objectives . 32

4 Design 33

4.1 Visualising Method of Equal Shares 33

4.1.1 Summary Page . 33

4.1.2 Round by Round Page . 40

4.2 Visualising Greedy Utilitarian Welfare 48

4.2.1 Page Design . 48

4.2.2 Satisfaction Measure Chart 49

4.2.3 Round Overview . 50

4.2.4 Satisfaction Measure Chart Coloured by Acceptance Status . . 51

4.3 Software Stack . 52

4.4 Architecture Overview . 56

4.4.1 Pabutools . 56

4.4.2 Data Capture . 59

4.4.3 Analysis . 62

4.4.4 Generating web pages . 63

4.4.5 Web Pages . 65

5 Implementation 66

5.1 The Pabutools Library . 66

5.1.1 Data Capture Classes . 67

iii

5.1.2 MESVisualiser . 68

5.1.3 GreedyWelfareVisualiser . 72

5.2 Visualising MES . 74

5.2.1 Summary Page . 74

5.2.2 Round by Round Page . 80

5.2.3 Maintaining Efficient Runtime 85

5.2.4 Runtime Analysis . 88

5.3 Visualising Greedy . 92

5.3.1 Optimising the Greedy Visualisations 94

5.4 Implementing Clustering on .pb Files 96

5.4.1 Data Visualisation . 97

5.4.2 Clustering Algorithms . 98

5.4.3 Results . 99

5.4.4 Conclusion of Clustering . 101

6 Evaluation 103

6.1 Testing . 103

6.1.1 Unit Testing . 103

6.1.2 Integration Testing . 106

6.1.3 Performance Testing and Bench Marking 108

6.1.4 Visualisation Time Performance 110

6.2 User Testing . 113

6.2.1 Familiarity with Participatory Budgeting 114

6.2.2 Effectiveness of the Greedy Page 115

6.2.3 Effectiveness of the MES Pages 117

6.2.4 Improvements . 122

6.3 Testing Objectives . 123

6.4 Fulfilment of Aims and Objectives . 125

6.5 Limitations . 132

iv

7 Project Management 135

7.1 Project Methodology . 135

7.2 Planning . 137

7.2.1 Feasibility Study . 137

7.2.2 Work Breakdown Structure 138

7.2.3 Scheduling . 140

7.3 Organisation . 141

7.3.1 Roles & Communication . 141

7.3.2 Meetings . 142

7.3.3 Version Control . 144

7.4 Risk Management . 144

7.4.1 Original Risk Assessment Form 144

7.4.2 Encountered Risks . 147

7.4.3 Revised Risk Assessment Form 148

7.5 Legal, Social, Ethical and Professional Issues 148

7.5.1 Legal Issues . 148

7.5.2 Social Issues . 149

7.5.3 Ethical Issues . 149

7.5.4 Professional Issues . 150

7.5.5 Public Good . 150

8 Conclusion 151

8.1 Future Work . 152

8.1.1 Advanced Visualisations . 152

8.1.2 Further Clustering Research 152

8.1.3 Additional Rules . 153

8.1.4 Rules Comparison . 157

Bibliography 161

A Survey 168

v

B Management 171

C Documentation & User Manual 175

vi

List of Figures

1.1 Comparative Diagram of Conventional Budgeting vs. Participatory

Budgeting Processes . 2

1.2 An Example Computation of the Effective Vote Count for a Project

Which Costs £75 . 5

1.3 Visual Representation for the Method of Equal Shares Voting Rule [7] 6

1.4 An Example PB Election in .pb Format 11

2.1 Example Displaying the Output After Running the Pabustats Visual-

isation . 21

2.2 The Default View of the pref.tools Site Displaying an Example Election

and Its Outcomes . 22

2.3 Example Pages From the Pabuviz Site 24

3.1 Testing Objectives . 32

4.1 Example of How the Budget Was Distributed Among Nine Selected

Projects With and Without a Tooltip 35

4.2 Example of How the Full Overview Table Looks 36

4.3 Expanding a Row in the Summary Table to Reveal a Hidden Row for

a Selected Project . 37

4.4 Summary Chart Comparing the Project’s Actual Voter Funding with

the Initial Voter Funding . 38

4.5 Summary Chart with a Tooltip Showcasing the Three Most Popular

Previously Selected Projects That Supporters Also Voted For 39

vii

4.6 An Example Round Summary . 40

4.7 Example of an Effective Vote Count Bar Graph 41

4.8 Example of a Reduced Effective Vote Count Bar Graph 42

4.9 Effective Vote Count for Project X 44

4.10 Demonstrating the Difference in Effective Vote Count for Project Y

Before and After Electing Project X 45

4.11 Demonstrating the Difference in Effective Vote Count for Project W

Before and After Electing Project X 45

4.12 A Flow Diagram Visualising the Relation Between Project X and the

Other Projects Participants Voted For 45

4.13 Example of a Sankey Diagram . 47

4.14 Example of a Chord Diagram . 48

4.15 An Example of How the Satisfaction Measure Bar Chart is Displayed

on the Greedy Page . 50

4.16 An Example of How the Round Analysis Visualisation is Displayed on

the Greedy Page . 51

4.17 An Example of How the Satisfaction Measure Bar Chart Coloured by

Acceptance Status Is Displayed on the Greedy Page 52

4.18 A Basic Example of a Jinja Template Used to Generate a HTML Page 54

4.19 A Partial UML Diagram for Subset of Relevant Classes and a Gen-

eralisation of How It Connects to Voting Rule Function (Before Our

Changes) . 57

4.20 A Partial UML Diagram for Subset of Relevant Classes and How It

Connects to the MES Voting Rule Function (Before Our Changes) . . 59

4.21 A UML Diagram for the New Object Returned by Voting Rules En-

abling Us to Store and Retrieve Data From Voting Rules (previously,

a Voting Rule Would Return Just a List of Projects) 61

4.22 A UML Diagram for the Visualisation Classes and How They Connect

to the Classes in Figure 4.21 . 64

viii

5.1 An Activity Diagram Showing the Responsibilities of the Individual

Components of the Projects . 68

5.2 Code Structure for MESVisualiser Class 69

5.3 Structure of the rounds List Dictionary That is Passed Into Our MES

Templates Using Jinja . 71

5.4 Structure of the rounds List Dictionary That is Passed Into Our Greedy

Template Using Jinja . 73

5.5 Expanded Rows Displaying Dynamic Explanations for Scenarios In-

volving Rejected Projects . 78

5.6 An Example Chord Diagram Without Project Prioritisation 83

5.7 A Demonstration of the Chord Diagrams Not Including an Important

Project . 84

5.8 Pie Chart Calculations . 87

5.9 Runtime Distribution for MES Rule with Analytics Set to True . . . 88

5.10 Percent Increase in Time for MES With Visualisations - Pre Optimisation 89

5.11 Percent Increase in Time for MES with Visualisations - Post Optimi-

sation . 90

5.12 Code Structure for Greedy Visualiser Class 92

5.13 Time Increase with Analytics for 605 Elections. Mean: 0.385%, STD:

3.639% . 93

5.14 Greedy Visualisation Example . 94

5.15 Percentage Increase for Time Taken for Greedy Visualisations. Mean

5.124%, 0.00604s . 95

5.16 Percentage Increase for Time Taken for Greedy Visualisations - Post

Optimisation. Mean 3.004%, 0.00513s 96

5.17 PCA Versus t-SNE 2D Transformation Results - Poland Wroclaw 2018 98

5.18 Clustering Results Using DBSCAN with ε = 0.3, 0.2, 0.1 (Left, Middle

Right) . 100

5.19 Time Taken to Run DBSCAN on Varying Size Elections 101

ix

6.1 Code Coverage Report for PR #15 (pabutools/pull/15) 104

6.2 Testing Development Process . 107

6.3 Percent Increase in Time for MES with Visualisations. Mean: 152.1%, 2.147s109

6.4 Percentage Increase for Time Taken for Greedy Visualisations. Mean:

3.004%, 0.00513s . 110

6.5 Percent Increase of Runtime With Visualisations Against Voters (Left)

and Projects (Right) . 111

6.6 Increase of Runtime With Visualisations Against Voters (Left) and

Projects (Right) . 112

6.7 Percent Increase in Processing Time for Greedy Visualisations 113

6.8 Proportions of Testers Familiar with PB, Greedy, and MES 115

6.9 Comprehension and Understanding of the Greedy Rule 116

6.10 Question: Would you trust a set of projects decided in your local area

with this method? . 117

6.11 Comprehension and Understanding of the MES Rule. 1: No Under-

standing, 10: Perfect Understanding 118

6.12 What Parts of the Pages Provide a Sufficient Understanding of the Rule119

6.13 How Effective and Clear Are Each of the Figures in Our Visualisations 120

6.14 Understanding of MES Nuances and Specifics 121

6.15 Support and Trust for PB . 121

7.1 An Example of how the Kanban Board was used within a Sprint Cycle 136

7.2 The Summary of a Typical Two-Week Sprint Conducted During the

Project . 137

7.3 Diagram of the Project’s Work Breakdown Structure Where Each Colour

Corresponds to a Different Deliverable 139

8.1 Example Graph Visualisation for Round-By-Round Analysis of Se-

quential Phragmen’s Rule . 154

8.2 Project Proposal Ideas for Participatory Budgeting in New York City 156

8.3 Mock Example Heatmap of Elected Projects in Warsaw 157

x

8.4 Comparative Density Plot of Participant Satisfaction for the Greedy

Rule and Method of Equal Shares . 158

8.5 Visualisation of Projects in PB Elections Using GPS Data 159

8.6 Visualisation of Projects in PB Elections Using Jaccard Distance . . . 160

A.1 User Testing Form Introduction . 168

B.1 Example of How the Meeting Notes Were Laid Out For a General

Meeting with the Supervisor Exported From Notion 171

B.2 Example of How the Meeting Notes Were Laid Out for a Meeting with

the Customer Exported From Notion 172

B.3 Initial Meeting Notes for Requirements Elicitation 173

B.4 Gantt Chart of Our Three-Semester Timeline for the Project 174

C.1 Visualisation Module Documentation Page One 175

C.2 Visualisation Module Documentation Page Two 176

C.3 User Manual to Install and Generate Visualisations Page One 177

C.4 User Manual to Install and Generate Visualisations Page Two 178

xi

List of Tables

3.1 Project Objectives . 27

3.2 Functional Requirements . 30

3.3 Non-Functional Requirements . 31

5.1 Descriptive Statistics for Percent Increase in Time for MES with Vi-

sualisations . 89

5.2 Descriptive Statistics for Percent Increase in Time for MES with Vi-

sualisations - Optimised . 91

5.3 Number of Clusters for Varying ε Values 100

6.1 Testing Objectives . 125

6.2 Achievement of Functional Requirements 127

6.3 Achievement of Non-Functional Requirements 129

6.4 Achievement of Project Objectives 131

7.1 Priority Labels and Their Corresponding Definitions 140

7.2 Team Roles . 142

7.3 The initial Risk Assessment Form indicating the Likelihood and Po-

tential impact of Risks . 146

7.4 The New Entry to the Original Risk Assessment Form, Indicating the

Likelihood and Potential Impact of the Risk Occurring 148

A.1 User Testing Questions . 170

xii

Abbreviations

PB - Participatory Budgeting

MES - Method of Equal Shares

Greedy - Greedy Utilitarian Welfare

xiii

Chapter 1

Introduction

1.1 Introduction to Participatory Budgeting

Participatory budgeting (PB) is a democratic initiative where community members

directly influence how a public budget is allocated. This contrasts the more popu-

lar and widely adopted process of electing representatives, who then choose how to

allocate the public budget. The diagram in Figure 1.1 illustrates this distinction:

in representative systems, the public elects officials who select projects, potentially

leading to outcomes that do not reflect the community’s interests. In PB, citizens

vote directly on projects, ensuring alignment with community needs. This innovative

approach empowers citizens by engaging them in the decision-making process that

impacts their lives and communities. Originating in Porto Alegre, Brazil, in 1989,

PB has since spread globally, with the latest estimates suggesting over 1500 imple-

mentations of PB, finding diverse applications in cities, schools, and public agencies

across different cultures and government structures [1].

1

Figure 1.1: Comparative Diagram of Conventional Budgeting vs. Participatory

Budgeting Processes

The core of PB involves community members taking on the role of decision-makers

tasked with identifying, discussing, and prioritising public spending projects. The

process typically follows several stages: ideation, where community needs are identi-

fied; proposal development, where ideas are transformed into feasible projects; voting,

where citizens choose which projects to fund; and implementation, followed by mon-

itoring and evaluation of the funded projects.

Following its inception in Porto Alegre, PB has been adapted to various global con-

texts with notable successes. For instance, in Tower Hamlets, London, the ‘You De-

cide!’ initiative engaged local residents in allocating resources for community projects,

enhancing local participation and satisfaction [2, 3]. Similarly, in Govanhill, Glasgow,

PB has been instrumental in addressing local priorities through direct community in-

volvement, showcasing the adaptability of PB across different urban settings [4].

2

A key benefits of PB is its direct impact on community engagement. By involving

community members in decision-making, PB helps demystify budgetary processes,

making government operations more transparent and accountable. It often leads

to more equitable public spending, with funds more likely to be directed towards

high-priority community needs, which may be overlooked in the traditional budget-

ing process. Moreover, PB can significantly enhance local infrastructure and services

by aligning them more closely with the community’s actual needs and desires. For

instance, in Porto Alegre, citizens used PB to fund the construction of new schools

and healthcare facilities, as well as the improvement of public transportation, where

citizens increased the health and education budget from 13% to almost 40% of the

total city budget from 1985 to 1996 [5]. This alignment can increase public trust in

government and improve participation rates, as individuals see tangible results from

their involvement in government decision-making.

1.2 Voting Rules

Voting rules in PB elections determine how participants’ preferences are translated

into decisions about which projects get funded. The choice of voting rule significantly

impacts the fairness and outcomes of the budget allocation, influencing how effectively

community needs are met. The following subsection will explore various voting rules

employed in PB, detailing how each method functions and their implications for

project selection and community engagement.

1.2.1 Utilitarian Welfare

Utilitarian welfare refers to a framework where the budget allocation decisions aim

to maximize the community’s overall happiness or utility. This approach prioritises

funding projects that provide the greatest total benefit to all participants, thus opti-

mising collective satisfaction.

3

1.2.2 Greedy Utilitarian Welfare

Utilitarian welfare maximisation is NP-hard [6]. A solution to this issue is the Greedy

Utilitarian Welfare algorithm. The Greedy Utilitarian Welfare is an approximation

of the utilitarian welfare. It selects projects in rounds, each time selecting a project

that leads to the highest increase in total satisfaction divided by the project’s cost.

1.2.3 Method of Equal Shares

Methodology

The main idea of the Method of Equal Shares (MES) voting rule is that each voter is

assigned an equal part of the total budget. The voter’s budget can only fund projects

for which they have voted. The method iterates through all project proposals, starting

with the projects with the highest number of votes. If a project can be funded using

the budget share of those who voted for it, it is selected. The method divides the

project’s costs evenly among those who support it. The method can be used with

two distinct types of inputs:

• Approval Voting: Where each participant votes for some of the projects with

the same strength.

• Utilities: Where each voter can designate the amount from their personal

budget that they want to allocate to each project.

Effective Vote Count

When identifying the winning projects of MES, it is essential to calculate what’s

known as the effective vote count. A key principle here is the exclusion of voters who

have exhausted their budget share from the count. This rule operates on the principle

that if a voter has already spent their entire budget share, then they have already

been satisfied by the projects that were selected. Consequently, priority is given to

funding projects that appeal to the remaining voters.

Voters with remaining funds but not enough to finance the project when its cost

4

is equally divided will count as a partial contribution. The effective vote count for

a participant is calculated as their remaining budget divided by the maximum funds

a participant will have to pay to fund the project. Figure 1.2 demonstrates how the

effective vote count is calculated for a project. Suppose we have five project support-

ers, each with a different remaining budget (10, 10, 10, 20, 30 respectively). To fund a

project that costs 75, the first four voters must pledge their entire remaining budget,

whilst the fifth voter must allocate 25. The effective vote count of each participant

is then the amount they will spend to fund this project divided by 25. In the case in

Figure 1.2, the effective vote counts are 0.4, 0.4, 0.4, 0.8, 1, respectively. The effective

vote count for the project is calculated as the sum of all effective votes of supporters;

in our case, the effective vote count is three.

Figure 1.2: An Example Computation of the Effective Vote Count for a Project

Which Costs £75

5

Figure 1.3 illustrates a simple example of a PB election outcome employing the MES

voting rule. Initially, the total budget is distributed evenly among all participating

voters. In this scenario, each voter receives an equal stake of €150 to allocate. Voters

assign their allocated funds to various projects of their choosing. The projects are then

funded with the shares of those who voted for them. This visualisation exemplifies

the PB process, where the collective input of community members directly influences

the financial support of community projects.

Figure 1.3: Visual Representation for the Method of Equal Shares Voting Rule [7]

Benefits

The MES voting rule amplifies the democratic aspect by ensuring each vote carries

equal weight in budget allocation decisions. Consider, for example, that 51% of the

population supports ten educational projects, 49% supports ten community projects,

and the money suffices only for ten projects. The classical election method will

choose the ten educational projects supported by 51% and ignore the 49% altogether.

In contrast, MES would pick five of each of the project types. The MES voting rule

has the following benefits:

• Increased and More Equitable Voter Satisfaction: Simulations indicate

that this method results in higher approval rates for winning projects, and a

6

more evenly distributed satisfaction across the voter base.

• Reduced Bias: Unlike traditional methods, which tend to favour projects

in specific categories at the expense of others, the MES voting rule minimises

these biases. This ensures a representation that more accurately reflects the

preferences of the entire population.

1.2.4 Additional Rules

Completion Rules

Since not all rules return exhaustive budget allocations, further methods are required

to render the outcome exhaustive. Completion methods further increase satisfaction

as a larger proportion of the budget is assigned.

• Exhaustion by Budget Increase: One method is to increase the budget

limit in the hope that the rule returns an exhaustive budget allocation for the

original instance. If, at any point, the rule returns a budget allocation that is

not feasible for the original budget limit, then the previously returned budget

allocation is returned.

• Exhaustion by Rule Combination: Another strategy involves applying a

sequence of voting rules until an exhaustive budget allocation is achieved. The

rules are implemented in a specific order, and the process continues until an

exhaustive budget allocation is reached, or all rules have been applied.

Other solutions to resolve remaining funds include the flexible option of saving the

money to be included in the available budget for the following year. Another option

is to spend the money on an amicable backup solution, for example, to fund the

maintenance and improvement of existing infrastructure or public amenities such as

road works.

7

Tie-Breaking

In executing the MES voting rule, a tie can occur when two or more projects have the

same effective vote count. In isolation, ties are unlikely to occur in large elections.

An experiment on election data on Pabulib, a PB library [8], found that only 0.6%

of elections resulted in a tie-breaking rule [9, 10]. One method of breaking ties is as

follows:

• The project with the lowest cost is selected.

• If two or more tied projects have the same lowest cost, then the project with

the highest initial vote count is selected.

• If two or more projects have the lowest cost and the same initial vote count,

the tie is broken uniformly randomly.

Rule Composition

Another method is composing the previously mentioned methods by computing the

outcome of several rules and returning the most preferred by the most extensive set

of voters, according to a given satisfaction measure.

1.3 Aims and Motivation

For almost all cities’ PB elections, the Greedy rule is the standard rule used [11].

This is because, compared to modern voting rules such as MES, the Greedy rule is

simpler and more transparent. These properties make it easier to understand how

Greedy works and why this voting rule chooses to accept or reject different projects.

Because of this, modern voting rules are less likely to be trusted and used. This can

happen even when these voting rules provide benefits that may be highly desirable for

specific elections. For example, MES is able to guarantee proportional representation

to groups of voters with common interests [12], which can help with ensuring that

minority groups are properly represented in an election’s outcome, encouraging them

8

to participate in further elections.

In analysing PB elections, the use of visual tools and data analysis is instrumental

not just for providing insights but also for enhancing public understanding and trust

in the process. Effective visualisation conveys complex data in a straightforward,

accessible manner, allowing community members to see how decisions are made and

how funds are allocated. This transparency helps demystify the budgeting process,

building trust and confidence among participants by showcasing the direct impact of

their contributions. This transparency extends to the various voting rules that can

be used in these elections, meaning that visualisations could be used to better inform

voters about how different voting rules work, as well as why these voting rules may

choose to accept and fund different sets of projects.

Taking the reasoning above into account, the three aims of this project were as follows:

• Create a product that visually explains the outcomes of different PB voting

rules.

• Build this product on the existing work implemented in the Pabutools library

(to be discussed in the next section) - a package owned by the customer.

• Offer varying levels of explanation depth for each voting rule, suitable for the

general public.

1.4 Pabutools

Pabutools is a Python library that provides tools to handle various kinds of PB

instances and a variety of voting rules to simulate the outcome of elections and provide

analysis. This toolkit enables users to parse Pabulib files, an extensive library for PB

data [8], and apply selected rules for participatory budgeting. The library is publicly

available via PyPI [13], making it accessible for anyone working with PB budgeting

data.

9

1.4.1 Pabulib

Pabulib (PArticipatory BUdgeting LIBrary) is a publically accessible library for Par-

ticipatory Budgeting [8] election. This website is dedicated to gathering data on

participatory budgeting elections from various global sources. The library uses a uni-

versal data format to store the files with the .pb extension [14].

Information regarding a single instance of participatory budgeting election should

be stored in a UTF-8 encoded text file with the ‘.pb’ extension. This file is organised

into three distinct sections:

• META section containing essential metadata such as the nation, budget allo-

cation, and tally of votes.

• PROJECTS section detailing the financial aspects of projects and other po-

tential metadata, including project category, objectives, and location.

• VOTES section recording the voting data, which may include various types of

voting. This section may also encompass voter metadata, such as demographic

information, including gender and age.

10

Figure 1.4: An Example PB Election in .pb Format

1.5 The Customer

Simon Rey is a recent PhD graduate from the University of Amsterdam who has

done extensive work and research in PB [15]. Our supervisor, Markus Brill, who is

also active in PB research, introduced us to Simon. Both Simon and Markus have

expressed the need for a visualisation tool to explain voting rules to the general

public. Simon is a key contributor and owner of the Pabutools Python package that

we discussed previously. Having Simon as a customer has been very beneficial because

we do not have to worry about implementing functionality that already exists within

Pabutools, such as parsing of .pb files or simulating the PB elections with different

rules. This allows us to focus on generating the visualisations which truly bring

value. Contributing to an already existing package gives our work more visibility

within the wider PB research community. However, contributing to an open source

11

package also comes with additional requirements, such as a higher bar for code quality,

writing external user documentation on usage and changes, and an external PR (Pull-

Request) approval process. Fortunately, since our customer is also the package owner,

we have had the opportunity for more direct communication outside of just the PRs.

1.6 Our Solution

Our solution builds on the Pabutools library by creating a visualisation subpackage

on top of the existing rule implementations. It provides a visual explanation for the

outcome of PB elections decided using either MES or Greedy as the deciding rule.

More precisely, our solution focuses on the explanation for how the election outcome

was achieved rather than an in-depth analysis of the outcome itself.

For MES, we produce both a high-level overview and an in-depth analysis of the elec-

tion. The summary page displays the budget broken down into the elected projects,

as well as the outcome of the election and dynamically generated explanations for

each part of the rule. This links to the in-depth analysis, allowing users to gain

a better understanding of any stage of the election they may have been interested

in or confused about. Our in-depth analysis includes a wide range of statistics and

visualisations explaining various intricacies of MES to the user. For example, the re-

lationship of votes between the elected project and the other projects not yet selected

by the rule, giving insight as to why other popular projects may never be selected.

For Greedy, we display the selected projects each round and an ongoing showcase of

the change in the remaining budget over time. Additionally, this displays the cases

where a rejected project is very popular but is too expensive to be funded. Moreover,

we give an overview of all projects with filtering and sorting, allowing users to view

the election in depth.

Our solution ensures that the original implementations are unaffected, requiring only

12

the addition of a class storing auxiliary information required for our visualisations.

Furthermore, they provide a basis for future work, ensuring other contributors can

build on the implementations and expand to a complete set of PB rules, giving com-

prehensive explanations for all scenarios.

1.7 Report Overview

The remainder of this paper’s structure is as follows: Chapter 2 explores the relevant

literature surrounding PB. Chapter 3 covers the set of requirements, aims and objec-

tives for this project. Chapter 4 discusses the overall design of the project. Chapter 5

analyses the implementation process of the visualisations and explanations. Chapter

6 examines how the system was tested against our requirements to produce a suc-

cessful product. Chapter 7 reviews how the project was managed as a whole before

Chapter 8 concludes with a short summary and discusses the prospects of future

projects.

13

Chapter 2

Literature Review

In this chapter, we explore the relevant literature surrounding PB. Firstly, we discuss

the inception and impact of PB before moving on to briefly discuss the various voting

rules that have been developed for PB. The rest of the chapter makes up the bulk and

involves exploring the existing solutions for visualising PB elections, before ending

the chapter with a conclusion. Further, it is worth mentioning that the topic of PB

and its various voting rules are still relatively new within this field. Therefore, as we

explore the relevant literature, we make sure to recognise the ongoing contributions

to this topic.

2.1 Origins and Impact of PB

While the topic of PB within this field is comparatively new, the origins actually

date back to the late 1980s within the city of Porto Alegre in Brazil. As described

by Cabannes [16], the historical analysis of PB comes in three stages. The first being

the experimental phase between 1989-1997, where the initial trial of PB took place

within Porto Alegre and a few other cities. The second was classed as the ’Brazil-

ian spread’ and took place between 1997-2000, this saw rapid adoption of the PB

model by more than 130 municipalities within the country. Finally, the third stage,

from 2000-present marks the expansion of PB beyond Brazil, where European and

numerous Latin American cities have adopted similar models. As of now, PB has

14

spread across the globe and has been adopted in most countries, including the United

Kingdom [17, 18].

Since its invention within Porto Alegre, PB has shown to have a positive impact to

communities worldwide. This is demonstrated by Rathore et al. [19] who found that

using PB within Porto Alegre has resulted in improved facilities for the local residents.

For instance, increasing the number of sewer and water connections within households

as well as increasing the number of schools four-fold. Further, Wampler et al. [20]

found evidence that PB positively impacts the well-being of under-served communi-

ties in Brazil, Peru, and South Korea. Finally, closer to home with London’s Tower

Hamlets, ’You Decide!’ project [2], in this case study, £5.06 million was allocated

over two years for residents to decide on local service funding within the borough of

Tower Hamlets. The project aimed to improve local services and increase community

participation by allowing the local residents to design and choose services through the

process. In the end, the project demonstrated positive impacts on empowerment and

decision-making processes for the participants. Most of this has already been briefly

mentioned within Chapter 1.

However, despite its praise and rapid adoption, the process still received a consider-

able amount of criticism. For instance, in the same paper by Rathore et al. [19], they

attributed one of PB’s shortcomings to a lack of representation of citizens who come

from poorer backgrounds in the process. Similar findings were found with the ’You

Decide!’ project in Tower Hamlets [2]. While the project was considered a success

(as it showed a noticeable impact on participants and their decision-making), many

participants found that the process failed to reflect their preferences, indicating that

the voting system may not have proportionally represented every group of voters. In

addition, PB has largely been criticised for its low participation rate, as shown by

Zepic et al. [21], where in Germany, public participation rates in PB projects were

often below expectations, with reports of the rate as low as 0.1%. Similarly, from

across the ocean, Stewart et al. [22] found the participation rate in Chicago to be

15

between 1%-3%.

From these papers mentioned, it is clear to see that while PB has rapidly been expand-

ing and has showcased some positive results, there is still room for improvement to

address the criticisms laid out earlier, such as satisfying proportional representation.

The next section of the literature will briefly explore these ideas.

2.2 Voting Rules

Up to this point in the literature, we have discussed the origins, impact as well as some

criticisms of PB. Moving forward, we briefly discuss the various rules and methods

created to select a project within PB.

2.2.1 Welfare-Maximisation Rules

The first class of rules we discuss are the Welfare-Maximisation rules. These rules aim

to optimise the overall ’welfare’ of voters by returning the groups of projects which

maximise a chosen utility function for the group of voters [23].

As described within Chapter 1, the utilitarian welfare maximisation is an NP-hard

problem as it requires solving the Knapsack problem. Therefore, the Greedy Utilitar-

ian Welfare is introduced which is an approximation of the utilitarian welfare. This

is the most common rule within most cities that employ PB elections [11]. However,

from the criticisms of PB discussed earlier, this rule does not provide a proportionally

representative system.

An additional rule for Welfare-Maximisation to discuss briefly is known as propor-

tional approval voting (PAV). This rule is a special case of Thiele’s voting rule, which

is a multi-winner voting rule proposed by Thorvals N. Thiele [24]. The multi-winner

voting rule is an electoral system explored by Edith et al. [25] in which multiple can-

didates can be elected. Later, this rule was adapted to PB by Pierczynski et al. [12]

16

and attempts to choose a rule that maximises the total score. Nevertheless, it fails to

satisfy the strong proportionality guarantees that was observed with the multi-winner

voting rule by Los et al. [26].

2.2.2 Sequential Purchase Rules

Another class of rules is known as sequential purchase rules, where voters receive

some virtual currency which they use to ’buy’ the projects. These rules aim to sat-

isfy proportional representation, a criticism mentioned within Rathore et al.’s paper

[19] and the Tower Hamlet’s ’You Decide!’ project [2]. Proportional representation

ensures fair representation for all voters by having projects selected in proportion to

the number of votes they receive.

The first of these rules is the Sequential Phragmén’s Rule [27] - which has already

been explained within Chapter 1 - where each voter starts with a budget of zero that

continually increases. When a group of supporters has enough virtual currency to buy

a project they all approve of, the project is bought. The rule stops when a project can

be bought, but only by violating the budget constraint. This rule can be computed in

polynomial time and was initially investigated by Brill et al. [28] within the concept

of the multi-winner voting rule who found that it satisfies proportional justified repre-

sentation, this rule was then later adapted to PB by Los et al. [26]. The proportional

justified representation property was initially proposed by Sánchez-Fernández et al.

[29]. This property implies the rule fairly distributes resources among voters based

on their preferences and needs.

Following this is an adaptation of the previous Phragmén rule labelled the Maximin

support rule and developed by Sánchez-Fernández et al. [30]. This rule allows a

redistribution of the loads in each round and was introduced as a multi-winner voting

rule by Sánchez-Fernández et al. Similarly, with the Phragmén rule, the rule was

then later adapted to PB by Aziz et al. [31].

17

The final sequential rule to discuss is MES, this has already been discussed in de-

tail within Chapter 1. This rule was first developed by Dominik Peters and Piotr

Skowron [32] for multi-winner voting and then later adapted to PB by Peters et al.

[12]. Comparable to the Phragmén rule, MES can also be computed in polynomial

time and satisfy the proportional justified representation.

This section provides a brief overview on the various rules and the properties they

satisfy, and as evident, there are voting rules which can resolve the criticisms of PB

mentioned in the previous section, most notably the issue with proportional represen-

tation. However, these rules are still regrettably not being adopted into PB elections,

one reason being the difficult nature of understanding these complex rules for both the

general public and organisers of PB elections. One way to combat this is to employ

the use of effective visualisations to convey how these voting rules work, which will be

explored in the next section. Note that for additional reading on this topic, refer to

Simon Rey and Jan Maly’s recent paper [33] where they provide an in-depth overview

of all the different rules within PB, along with proofs showcasing the properties they

satisfy.

2.3 Visualisation

The aim of this section is to explore justifications for visualisations (as opposed to just

using text-based explanations) and the benefits it can provide, before ending it off by

presenting key design choices that we can utilise to construct effective visualisations.

The use of visualisations has had a rapid expansion across the fields of various elec-

tions and social choice. This rise is due to the recognition of the benefits of visu-

alisation, therefore, it becomes vital we discuss the justifications for including these

visualisation. Firstly, a paper by Elena Long [34] described one important advantage

of visualisation, which is its ability to enable humans to interpret and comprehend

large amounts of data within a small amount of time. A further study by Paul Lester

18

[35] highlighted psychologist Jerome Bruner’s findings, indicating that people only

remember 10% and 20% of what they hear and read respectively, yet they remember

80% of what they see. These points combined together show why visualisations can

be used as an effective tool.

Following this, we briefly discuss the key elements that should be incorporated within

good visualisation design. Stephen Few [36] wrote in his book - Show Me the Numbers:

Designing Tables and Graphs to Enlighten - the practical rules for using colour within

charts. There are nine rules and the key ones we focus on are as follows:

1. If you want different objects of the same colour in a table or graph to look the

same, make sure that the background is consistent.

2. If you want objects in a table or graph to be easily seen, use a background

colour that contrasts sufficiently with the object.

3. Use different colours only when they correspond to differences of meaning in

the data.

4. Use soft, natural colours to display most information and bright and/or dark

colours to highlight information that requires greater attention.

In addition, Shneiderman in his paper [37] introduced a list of tasks that visualisations

should support, these tasks led to what is now known as the Shneiderman mantra.

This mantra showcases the key principles in producing effective visualisations and

emphasises beginning with an overview, allowing for zooming and filtering, and then

finally enabling details-on-demand. This methodology, as discussed by Elena Long

[34], has been used for many years by web designers as a guiding framework to con-

struct effective visualisation.

Through adhering to these key elements, we are able to construct more effective

visualisations - ones that can simplify complex processes and allow individuals to

quickly interpret large amounts of data. Note that these are just a few examples of

19

the benefits and justifications of visualisations, as well as what makes a visualisation

effective. For additional reading on this topic, please refer to Stephen Few’s design

book [36], Shneiderman’s paper [37] and Elena Long’s paper [34].

2.4 Existing Solutions

Having covered the justifications for why visualisations can be an effective tool, we

now investigate existing solutions for visualising PB elections. However, given the

recent emergence of this topic, solutions are regrettably few; despite this, there are

still three solutions we can discuss.

2.4.1 Pabustats

The first known application that attempts to visualise PB elections comes from Fal-

iszewski et al. [38] who also unveiled the Pabutools package and Pabulib library.

This web-application is known as Pabustats [39] and is used to compare different

voting rules in PB based on the data from Pabulib. The web-application features a

straightforward text-based interface, enabling users to select a base rule and multiple

other rules to compare it with. These rules include: Utilitarian Welfare, Phragmén

and MES, each rule can additionally be considered in four variants. Upon selecting

an election - whether by uploading their own or selecting from the provided list -

and choosing the rules for comparison, the user is presented with a table displaying

each candidate project. These projects are accompanied by a checkmark or dash

to indicate whether that project was selected or rejected under each respective rule.

In addition, general statistics of the election as well as the projects are presented,

for example, cost, mean and standard deviation. While this page can be useful in

comparing different rules, the analysis provides no visual information, or more im-

portantly, it fails to give explanations for how these voting rules arrived at these

outcomes. Further, since Pabustats features text-based visualisations, it can be less

engaging for the user to use and retain the information provided. See Figure 2.1 for

an example of how Pabustats displays the selected or rejected projects of each rule.

20

Figure 2.1: Example Displaying the Output After Running the Pabustats

Visualisation

2.4.2 Pref.tools

The next application we discuss is another interactive web-application known as

Pref.tools [40]. Similar to Pabustats, this site is built using Pabutools and allows

the user to compare different voting methods; however, unlike Pabustats, it is not

designed to compare the outcomes of real elections. Instead, this page allows the

user to interactively add voters and projects as well as assign voters to projects, and

then compare how different voting rules select different outcomes. This is shown by

a table where users can click on a cell to assign a voter to a project and observe the

table below, which displays whether each project was selected or not under each re-

21

spective rule. On top of this, when compared to the text-based visualisations present

within Pabustats, the page features clear and effective visualisations. Nonetheless,

the site still fails to provide explanations for how these voting rules arrived at these

outcomes, further, the site fails to load with medium-large elections such as those

featuring 1, 000+ voters or 100+ projects and struggles handling smaller elections

such as those featuring 200+ voters or 20+ projects. See Figure 2.2 for a default view

of the Pref.tools site which features a default example which users can modify.

Figure 2.2: The Default View of the pref.tools Site Displaying an Example Election

and Its Outcomes

2.4.3 Pabuviz

The final application we discuss is the newest addition, known as Pabuviz [41]. Once

again, similar to Pabustats, this page allows the user to compare different voting

methods and akin to Pref.tools, features similar engaging visualisations. On the

other hand, what separates this application apart is that it can also be used to

compare outcomes from two different elections and showcase useful visualisations.

22

Various examples include a histogram displaying the distribution of the relative voter

satisfaction and the average satisfaction chosen by different rules, this can be seen

in Figure 2.3b. The purpose of this application is to provide tools for organisations

of PB elections to make better-informed decisions, as they can quickly determine at

a glance what rule might suit their election more. As a result, a lot of the terms

used within the site are more suited to someone who understands PB very well and

its various rules, such as an electoral officer. Further, as with the previous two sites,

the site still does not provide explanations nor justify how these voting rules arrived

at these outcomes. Therefore, a member of the general public may not fully grasp

the data shown across the various visualisations. In addition, this site can only allow

elections that have up to 20 projects and 5, 000 voters to be uploaded, this is somewhat

unsatisfactory as there are many elections that can feature up to 100 projects and

10, 000 voters, or even higher in some cases that cannot be visualised using Pabuviz.

See Figure 2.3 for various visualisations that Pabuviz provides.

2.4.4 Limitations of Existing Solutions

Whilst the solutions we have described above do offer promising approaches. They are

not without limitations, for example, all three solutions fail at providing explanations

for why a project got selected or rejected under any given voting rule. This is critical

as members of the general public without any knowledge of PB will find it difficult to

comprehend the complex voting rules without any accompanying explanation for the

outcomes. This is further exacerbated by some of the solutions, most notably Pabuviz,

where they make large use of research terms and a regrettably lack of definitions,

which may make it difficult for the average user to comprehend the subtle nuances

within each visualisation. Finally, Pref.tools and Pabuviz are unable to handle large

elections, with the former site becoming unstable with large elections and the latter

preventing users from uploading any elections that feature more than 5, 000 voters

and 20 projects.

23

(a) Pabuviz Page Comparing Rules Across

Several Elections

(b) Pabuviz Page Comparing Statistics of

Two Elections Across Several Rules

(c) Main Page for Pabuviz Displaying the

Overview of all the Elections in the

Database

Figure 2.3: Example Pages From the Pabuviz Site

2.5 Conclusion of Literature Review

As is evident from the literature, there are voting rules which resolve the issues

regarding the criticisms of PB. However, they are not typically utilised in elections,

this can be attributed to the fact that the Greedy rule can be easier to understand

due to its transparency and therefore, is often picked up by election organisers. As

mentioned in Chapter 1, the Greedy rule is used by almost every city that conducts

PB elections [11]. As a result, creating effective visualisations for PB elections aimed

at the general public could help them understand rules such as MES more since

the public is not likely to adopt a rule they do not understand. However, none of

the existing solutions provide visualisations for voting rules, such as MES, aimed

24

at the general public (as explored in the previous section). For this reason, one of

our primary aims in this project is to provide visualisations that not only explain

the outcomes of different PB voting rules but also offer varying levels of explanation

depth for each voting rule.

25

Chapter 3

Requirements

To ensure the success of the project, a set of requirements, aims, and objectives was

created from the inception. These requirements ensure the product that is produced

matches the customer’s desires and achieves the broader aims and motivations we set

out to achieve.

3.1 Objectives

Alongside the aims defined in Section 1.3, we have also established objectives we

wish to achieve. They are more specific than our broader aims and define project-

specific goals that this project aims to address. These objectives are SMART (Specific,

Measurable, Achievable, Relevant, Time-bound) [42]. Each is time-bound by the

project deadline - 30th April 2024 and must be completed by or before that point.

The objectives are measured with a set of tests designed to numerically determine

how well we achieved them. The objectives can be seen in Table 3.1.

26

Code Objective

O1 Build a set of tools that visually explains the outcomes of different PB

voting rules. This tool will display all relevant information required to

understand how the final selection of projects has been made.

O2 This tool will improve the explainability of the PB voting methods, ensur-

ing that with ten minutes of use on each PB voting rule, the user will be

able to explain effectively in their own words how the rule works.

O3 The increased understanding of voting rules will ensure voters have com-

plete confidence in the election results.

O4 The tool will be made publicly available via the Pabutools Python library.

O5 This tool will decrease the complexity of explanations by using methods

such as abstractions and clustering to reduce the apparent quantity of

data.

O6 The tools will offer varying levels of explanation depth for each voting

rule. Since some elections will have a significant number of votes, simplic-

ity is integral to ensuring the voters have a strong understanding of the

underlying processes.

Table 3.1: Project Objectives

3.2 Requirements

Defining a set of requirements ensures the project has a work plan we can follow.

We prioritise the changes we implement to ensure that we produce a minimum vi-

able product (MVP) as quickly as possible. In this subsection, we present the initial

requirements that we created for our project specification. Whilst we followed these

closely throughout the project, some requirements were added, removed, or adapted

depending on the views of the customer or the supervisor. Our requirements were

prioritised using MoSCoW (Must, Should, Could, Won’t). Ensuring we can strate-

27

gically plan what we do at which stage of the development. The customer approved

the set of requirements before beginning project development.

3.2.1 Functional Requirements

First, we consider functional requirements. These “define what a product must do

and what its features and functions are” [43]. The team developed the requirements

based on meetings with the customer and supervisor. The meeting notes are shown

in Figure B.3 and provide a basis for the requirements we have created in Table 3.2.

Code Requirement MoSCoW

R1 C1: Develop a set of tools to visualise outcomes of PB elec-

tions.

Must

R2 C2: The tool will be embedded into Pabutools. D2: Sub-

mit the changes to the tool as a pull request to the GitHub

repository.

Must

R3 C3: The implementation of PB rules within Pabutools will

need to be tweaked so they can provide explanations as well

as the result. D3: Add a parameter to the existing PB rules

implementation, which runs the explanation tool if selected.

Must

R4 C4: The modification made to the rules should not signifi-

cantly modify the running times of rules when no explanation

is requested. D4: Adapt PB rules to include an additional

parameter which ensures any explanations are only run if

this is True.

Must

R5 C5: A separate module will be created from scratch for the

generation of the explanations. D5: Create a new set of

Python classes to be integrated into the Pabutools library.

Must

28

R6 C6: The module will allow the user to provide an explained

result as output by the Pabutools rules and will automati-

cally generate visualisations for the explanation. D6: While

the results of the PB rules are being calculated, generate

visualisations as an HTML file.

Must

R7 C7: This tool will implement the visualisations for MES.

D7: Initially, only adapt the Equal Shares implementation

in Pabutools.

Must

R8 C8: This tool will implement the visualisations for Greedy

Utilitarian Welfare, and Phragmen’s Voting Rules.

Should

R9 C9: This tool will implement the visualisations for the Wel-

fare Maximisation method. This method is very complex;

therefore, implementation of simple explanations may be

very difficult. D9: Develop an abstraction of the Knapsack

problem, to explain the problem to a non-technical user.

Could

R10 C10.1: Add visualisations to show the outcomes of elections

and allocations of funds. D10.1: Include a separate module

for the generation of visualisations of results. D10.2: As

with R4, this should not increase the runtime of the existing

PB rule implementation.

Could

R11 C11: Visualisations will be interactive, allowing users to dy-

namically change parameters to see differences in real-time.

D11: On top of the created HTML file, include additional

features allowing for an interactive environment where the

user can engage with visualisation features.

Could

29

R12 C12: The tool will include additional features allowing for

the comparison between different voting rules. D12.1: In-

clude a parameter allowing the user to select an additional

voting rule to be computed. D12.2: Run the computation

of the additional rule in parallel, ensuring minimal impact

on running time.

Could

R13 C13: Include abstractions grouping similar voters into one

to increase the simplicity of explanations. D13: Use various

clustering methods to group voters into separate clusters.

Should

Table 3.2: Functional Requirements

3.2.2 Non Functional Requirements

Conversely, non-functional requirements “describe the general properties of a system”

[43]. We include these since they provide additional clarity into the design of the sys-

tem. Take, for example, requirement R14, defining how quickly the visualisations

should run. Whilst this is not a feature we implement directly, it is a requirement we

must achieve to make the user experience as seamless as possible. Table 3.3 shows

each of these with the accompanying code and MoSCoW rating.

30

Code Requirement MoSCoW

R14 The running time of the PB rules with the explanations re-

quest should not exceed 300% of the running time of the

initial rules without explanations.

Should

R15 The tools’ runtime should scale proportionally to the number

of voters and projects in the election, ensuring that when

used in real-life elections with 100,000 voters, the tool works

effectively.

Must

R16 The output of the explanation and accompanying visualisa-

tions will be intuitive to use and require no more than 5

minutes of explanation for a new user to learn how to use

them.

Must

R17 All visualisations and interactive features should be accessi-

ble on both desktop and mobile devices.

Could

R18 All visualisations should represent the data accurately, with

no errors or discrepancies.

Must

R19 The system should be designed to accommodate additional

voting rules in future, with adaptation to the system being

as minimal as possible.

Could

R20 The tool and its visualisations should be accessible to users

with disabilities complying with relevant accessibility stan-

dards.

Must

Table 3.3: Non-Functional Requirements

As with our functional requirements, these were based off the meeting notes from the

customer meeting, as seen in Figure B.3 within the Appendix.

31

3.3 Testing Objectives

We created a set of testing objectives in advance of project development. These

objectives allow the team members to clearly understand the required quality and

functional benchmarks. Since many of our objectives require user testing to ensure

they have been achieved appropriately, we set a plan to measure the objectives against

this. These testing objectives are shown in Figure 3.1, which are evaluated in Chapter

6.

• TO1: Verify a set of tools that are built to visualise explanations of outcomes

for PB rules and ensure all relevant information required to understand the

project selection is present.

• TO2: Evaluate if the tool improves the explainability of the PB voting methods.

Ask the reader to explain the before and after the use of the tool after ten

minutes of use.

• TO3: Assess if the voter trusts the election result with 100% confidence after

using the tool on each of the PB rules.

• TO4: Assess if the tool has been successfully integrated into the Pabutools

library.

• TO5: Assess if the tool decreases the complexity of the evaluation after using

a range of abstraction methods.

Figure 3.1: Testing Objectives

32

Chapter 4

Design

In this chapter, we discuss the overall design of our project. There are many moving

parts involved in our system, and therefore, we discuss each component separately

before attempting to see how things fit together. We will first look into understanding

the design of the web pages we want to generate. We will then look at our software

stack and see what technologies and tools we want to use, and finally, we will go over

the technical architecture of our solution; in particular, we will look at the different

classes that will be created and how everything will be organised within the package.

Given that our work contributes to the existing Pabutools open source library, we

will also look at the current state of Pabutools and understand how it works.

4.1 Visualising Method of Equal Shares

4.1.1 Summary Page

The summary page provides users with a straightforward, easy-to-understand overview

of the results of a given election calculated using the MES voting rule. This page is

typically the first page users access before examining more details with the round-by-

round page, as understanding can aid them in interpreting the detailed information

more effectively. Further, this ensures that users will focus on the most critical aspects

of the election results and can subsequently motivate them to explore the round-by-

33

round page to discover any additional details.

Page Design

Having described the general idea of the summary page, we can now proceed with

the design of the summary page. When making important design decisions for our

pages, we kept in mind the 9 rules of visualisation listed in Election Data Visualisa-

tion (2013)[44]. Firstly, we include text at the top of the screen describing what the

page is and what it displays. This helps the users understand the purpose of the page

and the visualisations within them. Further, we include necessary features and de-

tails pertaining to the election itself, this includes the name of the election, number of

participants, number of selected and rejected projects, total budget and budget spent.

Below this, the first visualisation appears presenting how the budget was allocated

across selected projects in a chart. This is then followed by the second visualisation

which displays a summary table where each row represents a round of the election,

each row illustrates what project got selected or rejected in that round with details

pertaining to the project such as, cost, effective vote count and funding lost. More-

over, each row can be expanded on to reveal a hidden section containing additional

details of the specific project from the expanded row. After describing the visualisa-

tions used very briefly, we will now go through each visualisation in detail starting

with the budget allocation chart.

Budget Allocation Chart

This chart is used to present how an election’s budget was distributed amongst the

projects selected this election. The length of the chart represents the budget, and

each bar represents the cost of the selected project. In addition to this, a tooltip is

displayed when hovering the mouse over a bar, containing details on what the chart

represents, as well as the project name and how much of the overall budget was

deducted from the project cost. This chart enables the users to quickly identify how

much of the overall budget was spent and the relative cost of the selected project. See

34

Figure 4.1 for an example of how the budget chart looks like in the summary page.

(a) Budget Chart Without Tooltip Displaying How the Budget Was

Distributed Among Nine Selected Projects

(b) Budget Chart with a Tooltip Displaying the Project Name, Cost

and How Much of the Overall Budget It Represents

Figure 4.1: Example of How the Budget Was Distributed Among Nine Selected

Projects With and Without a Tooltip

Overview Table

Following the budget chart, an overview table is laid out where each row represents

each round of the election and contains details of a specific project. For example, the

project’s name, cost and the number of votes it received are all provided. Further,

the effective vote count is included which takes into account fractional votes in cases

where projects receive fewer votes due to voters also supporting more popular alter-

natives. Moreover, a chart is included on the right-most column which displays how

much the supporters of each project initially had at their disposal compared with

what they actually have at the start of the round, further details on this chart is

provided in a subsequent section. Finally, the projects that were selected are marked

in green whereas the rejected projects are marked in white, allowing the user to easily

distinguish between the two. See Figure 4.2 for an example of how the overview table

is displayed within the summary page.

35

Figure 4.2: Example of How the Full Overview Table Looks

In addition having a row for each project, the user is able to click on a row to ex-

pand it and reveal additional information pertaining to the project. This includes the

project’s description, categories and any other details. Furthermore, for projects that

were selected, a direct link to the round-by-round page is provided, which sends the

user to the specific round corresponding to the row. The addition of this hyperlink

allows users to glimpse at a more thorough analysis of the specific round. When a

user clicks on a row, it implies they are already looking for more information. Hence,

it make sense to include the link within the row, as opposed to placing the link on

the table itself.

Moreover, within the expanded row, we generate a dynamic explanation. This dy-

namic explanation provides an insight as to why a project was selected or rejected,

using an appropriate amount of information. Finally, if applicable, we list all the

projects that were also voted by supporters of the given project and how much fund-

ing was lost to each of them. See Figure 4.3 for an example of what the expanded

row looks like for a project that was selected.

36

Figure 4.3: Expanding a Row in the Summary Table to Reveal a Hidden Row for a

Selected Project

Finally, we can dive deeper into the chart as mentioned earlier, exploring its features

and justification. The idea for this chart - along with designs for the un-expanded

rows in the table - originally came from the customer who provided us with an HTML

file example containing this chart. After playing around with it, we decided to incor-

porate it within the summary page. As previously stated, the general idea of the chart

is to display how much the supporters of each project initially had at their disposal

compared with what they actually have at the start of the round. More specifically, as

observed in Figure 4.4, the amount marked as the lower arrow indicates the funding

the supporters were initially entitled to, this can also be interpreted as the number

of votes for a project multiplied with the amount distributed to each voter at the

very start of the election. However, this amount can decrease as it becomes partially

allocated to previously selected projects that these voters have also supported, the

total amount used for previously selected projects is then represented by the pink bar

within the chart. Therefore, the amount left over for voters or in other words, what

they actually have at the start of the round is represented by the blue bar. Lastly,

the amount marked as the upper arrow simply indicates the cost of the project. See

Figure 4.4 for an example of how a chart looks like for a project that was rejected,

37

as can be observed, the amount for the blue bar is less than the cost of the project,

therefore, the project was not selected. However, it’s also worth mentioning in Figure

4.4 that the amount for the pink bar exceeds the cost of the project, this implies that

supporters initially had enough to select the project but unfortunately lost too much

funding from previously selected projects and as a result could no longer afford the

project.

Figure 4.4: Summary Chart Comparing the Project’s Actual Voter Funding with

the Initial Voter Funding

In addition to the chart, ideas for the tooltips on the chart were also recovered

from the previously-mentioned HTML file. They were incorporated into the page

to provide users clarity on what each component of the chart represented and in the

case of the pink bar, provide additional details about aspects of the round. As ob-

served in Figure 4.5, upon hovering over the pink bar, information regarding the three

previously-selected projects that were most popular with supporters of the project

in consideration is shown. This includes the project’s name, how much funding was

spent on the project and a bar representing the funding spent. To avoid the tooltip

being too bloated, only three projects was chosen to be shown. Displaying only three

projects also allows the user to easily make comparisons between the most relevant

projects in terms of funding lost, without being overwhelmed with information.

38

Figure 4.5: Summary Chart with a Tooltip Showcasing the Three Most Popular

Previously Selected Projects That Supporters Also Voted For

There are a couple of reasons why we pushed to use this chart visualisation as opposed

to simply text. One such reason is because it provides an intuitive way of conveying

detailed information for the user. Another reasons is that it can make it easier for

a user to identify relationships between projects and spot at a glance if for example,

a rejected project was close to being selected, or if a rejected project initially had

enough funding to be selected but lost some of it due to previously selected projects.

Further, the colours of blue and pink were used for this visualisation to clearly dif-

ferentiate between funding available and funding lost, a darker colour such as blue

contrasts with a lighter shade of pink to distinguish between those two elements -

satisfying Few’s third rule for using colour within charts mentioned within Section

2.3.

Finally, we aimed to keep high-level details about the chart within the tooltip to

ensure the chart remains at a high level of abstraction. This is beneficial as it keeps

the visualisation simpler and more intuitive for the user to understand at a glance,

by ensuring that users who desire more information can access it simply by using the

tooltips without overwhelming those who would prefer a simpler visualisation.

39

4.1.2 Round by Round Page

The round-by-round page is a comprehensive resource that allows the user to gain a

deeper understanding of each stage of the election, why the project was elected at

that round. The first page displays the project that was elected in the first round,

while the visualisations provide further insights into why this project was elected and

how it impacts the other projects in future rounds.

The page has navigation so the user can proceed through each round as the elec-

tion unfolds. The page navigation comes in the form of a button to go to the next or

previous page and a drop-down button to go to any of the rounds.

Round Overview

The round overview text includes information on the project that was elected at the

current round, including the project name, description, and cost. Other information

regarding the election, including the remaining budget and round number, is also

displayed. Navigation between rounds can be reached from this part of the website

to allow for easy and intuitive navigation for the user.

It was essential to include the project’s name in the drop-down menu as well as

the round number so that the user can identify a specific project of interest without

iterating through each round. For example, if a user wanted to see at which stage a

project they voted for was elected.

Figure 4.6: An Example Round Summary

40

Effective Vote Count

In each round of the MES voting rule, the project with the greatest effective vote

count is selected. The cost of the project should be split as evenly as possible among

the project voters. Each voter’s share of the project cost is taken away from their

budget, which can result in a change in the effective vote count of the remaining

projects.

The effective vote count bar chart displays the effective vote count for each project

remaining at a current round. The project with the greatest effective vote count in

this graph is the project that was elected in this round by the definition of the MES

voting rule. This graph is informative as it indicates which projects were close to

being selected and the projects that are likely to be selected in the coming rounds

should their effective vote count remain a similar value.

Figure 4.7: Example of an Effective Vote Count Bar Graph

Pie Charts

The voter flow for the project elected at the current stage is explored in the pre-

viously mentioned diagrams. Pie charts are utilised to see how voters for all other

projects voted for the project elected at the current round. For each of the remaining

projects that have not been rejected, the proportion of how many people voted for

the current project is also displayed. This allows the user to get a complete picture of

the relationship between voter flows. Each pie chart is accompanied by dynamically

41

generated text describing the information contained within the pie chart. The text

also explains the average budget decrease of the voters who voted for this project

after the project at the current round has been elected.

Reduced Effective Vote Count

Similar to the effective vote count bar graph, the reduced effective vote count bar

graph explores the effective vote count of each project after the current round has

been elected. This is necessary as the effective vote count for each project changes

round to round as the budget a voter had previously pledged to a project has been

spent on another project.

The graph displays a bar for each of the remaining projects. A proportion of the

bar represents the new effective vote count (blue), and the other proportion of the

bar represents how much the effective vote count for that project has been reduced

compared to the previous round (red). The combination of the two proportions sums

up to the effective vote count of the project before the project at the current round

has been elected.

A key advantage of this graph is its ability to highlight the projects that have been

most affected by the project at the current round. This is evident in the bars that

show the largest proportion of reduced effective vote count.

Figure 4.8: Example of a Reduced Effective Vote Count Bar Graph

42

Figure 4.8 gives an example of a reduced effective vote count bar chart. The red

proportion of the bar represents how much the project’s effective vote count has

decreased in the current round. In Figure 4.8, we see that before the round, ’planting

trees in the city’ had the highest effective vote count; after calculating the new effective

vote count for each of the projects, ’Real-Time Bus Arrival Monitors in bus stations’

had the highest effective vote count. Therefore, in the next round, if all remaining

projects were represented in the bar graph, then this project would be elected in the

next round.

Flow Diagrams

As mentioned in the introduction section, the effective vote count of a project is equal

to the sum of its supporters’ individual effective vote counts. As previously stated,

if a participant cannot contribute an equal share of the project, then their respective

effective vote count is reduced, affecting the effective vote count of the entire project.

The flow diagrams show the voters’ relationships between projects. This is useful

as it demonstrates how electing a project will likely affect another project. Consider

electing project A for the first round; each supporter spends nearly their entire virtual

budget. It is crucial to analyse the other projects these participants voted for as it

is likely that they will no longer be able to fund their equal share of the remaining

projects they voted for, reducing the effective vote count of these projects, hence

making them less likely to be elected in following round. The flow diagrams capture

the voters’ relationship between projects. The two flow diagrams we use are the

Sankey diagram and the chord diagram, which are explained in detail in the following

section.

Example

We will discuss an example to highlight the importance of flow diagrams. Consider

an election with six participants. Participants A, B, C, and D voted for Project X,

which cost £80, and participants B, C, D, and E voted for Project Y , which cost

43

£40. In the first round of the election, project X is chosen as it has the highest

effective vote count, as seen in Figure 4.9; project X has an effective vote count of

four as the equal share of the project is within all four participants budget. The

effects of electing project X on project Y can be seen in Figure 4.10. Figure 4.10a

calculates the effective vote count before project X was elected, and Figure 4.10b

shows the effective vote count after project X is calculated. The vote counts are 4

and 1.6, respectively. We see a significant decrease in the effective vote count after

project X has been elected. This is because they share a large proportion of voters.

This relation is captured in the Sankey diagram in Figure 4.12 where the majority

of the participants who voted for project X voted for project Y . Figure 4.11 shows

how the effective vote count was unaffected after electing project X as they share

no common voters. This example shows the importance of capturing the flows and

relations between projects. We dive deeper into the type of flow diagrams used in the

following section.

Figure 4.9: Effective Vote Count for Project X

44

(a) Effective Vote Count for Project Y

Before Electing Project X

(b) Effective Vote Count for Project Y After

Electing Project X

Figure 4.10: Demonstrating the Difference in Effective Vote Count for Project Y

Before and After Electing Project X

(a) Effective Vote Count for Project W

Before Electing Project X

(b) Effective Vote Count for Project W After

Electing Project X

Figure 4.11: Demonstrating the Difference in Effective Vote Count for Project W

Before and After Electing Project X

Figure 4.12: A Flow Diagram Visualising the Relation Between Project X and the

Other Projects Participants Voted For

45

Sankey Diagram

A Sankey diagram was chosen to visually represent voting patterns among partic-

ipants who could vote for multiple projects. A Sankey diagram is a flow diagram

characterised by using thick arrows or bands to show the flow volumes between dif-

ferent nodes. The width of the arrows or bands is proportional to the flow quantity

they represent, effectively visualising the distribution and transfer of a specific quan-

tity among various parts of a system [45].

On the interactive round-by-round page, a dynamic Sankey diagram is used to show

how voters for the project elected at the current round (left node) vote for the other

projects (right nodes). This feature allows the user to explore the voting patterns

in real time, enhancing their understanding of the data. The individual bands flow-

ing from the singular left node to various nodes on the right-hand side illustrate the

distribution of voters who have also voted for other projects. Each band’s thickness

corresponds to the number of voters who voted for both the project on the left and

the project on the right. The graph is designed to show the overlap in voting be-

haviour, making it clear which projects share a common voter base with the project

elected at the current round. An example Sankey diagram can be seen in Figure

4.13 visualising how voters of ’Computers for community learning’ voted for other

projects. The diagram provides visual clarity in flow representation, illustrating flows

and their quantities in proportion to their size.

46

Figure 4.13: Example of a Sankey Diagram

Chord Diagram

Building upon the concepts explored in the Sankey diagram, a chord diagram was

used to show the voter flows between multiple projects. A chord diagram shows the

flows or connections between several entities (nodes) [46]. An arc along the circum-

ference of a circle represents each entity. Chord diagrams are helpful in showing rela-

tionships between entities and their relative magnitudes compared to alternative arcs.

As explored in the Sankey diagram, we have seen the one-way relationship in how

people who voted for the project were elected at the current round and elected for

other projects. The chord diagram builds upon this by exploring how the voters of

the other projects voted.

Figure 4.14 shows how voters for seven different projects voted. Chords between the

arcs represent participants who voted for both projects.

47

Figure 4.14: Example of a Chord Diagram

4.2 Visualising Greedy Utilitarian Welfare

Unlike with visualising MES, due to the simple nature of the Greedy rule, a single

page was used to provide users with both a straight-forward overview of the results

and a brief analysis of each round.

4.2.1 Page Design

The design of the page follows on from both pages of MES by first introducing the

user to text at the top of the screen describing what the page is and what it displays.

This includes the name of the election, number of participants, total budget and bud-

get spent. As mentioned earlier with the summary page of MES, this is to aid the

user in understanding the visualisations within the page, as well as the purpose of

the page as a whole.

Following this, the budget allocation chart from the summary page appears as the

first visualisation. This was included in this page as well as the summary page for

MES to provide consistency for users who go to visit both pages, giving a sense of

48

similarity for the user and having to avoid to learn an entirely new visualisation.

For a more detailed discussion on this chart, refer to Section 4.1.1 as the design deci-

sions and justification have already been explained within the summary page of MES.

Following the budget allocation chart, the second visualisation emerges and displays

a bar chart which showcases the satisfaction measures for each project. The satisfac-

tion measure of a project defines how important a project is to the election voters as

a whole (usually, this corresponds to the number of votes a project receives). Below

this, a round overview visualisation appears which displays the remaining budget, se-

lected project and any rejected projects in that specific round, the user is able to click

through each round using the buttons provided. For the final visualisation, another

satisfaction bar chart is displayed except each bar is now coloured by acceptance sta-

tus, giving an overview of the outcome of the election.

The decision not to include the summary table from the MES page was intended, this

is because many of the visualisations and explanations present within the summary

page are not necessary for the Greedy page. For example, rejected projects do not

require their own explanations when using the Greedy rule, as a result, this means

further abstraction of the summary table is possible. Therefore, a round overview

and the final satisfactory measure chart are included as replacements. The round

overview can handle both accepted and rejected projects in a round, and the final

chart handles giving an overview of the election. After describing the visualisations

used, the subsequent sections will describe each visualisation mentioned in detail,

starting with the first satisfaction bar chart.

4.2.2 Satisfaction Measure Chart

This chart is used to display the satisfaction measures for each project, informing

the user on what projects were the most important to the voters in the election.

The projects are displayed as horizontal bar charts as it can accommodate longer

labels and allow for easier comparison between projects. Further, the user is able to

49

utilise the drop-downs provided to filter the bar chart by selected or rejected projects,

and sort by name, cost or satisfaction score. The usage of filtering and sorting were

included to allow the user to focus on the information that is relevant to them and be

able to explore the data more efficiently in the case of very large elections. In addition,

it is one of the key principles present in Shneiderman’s mantra as described in Section

2.3, to allow for filtering and data manipulation. Finally, the chart is accompanied

with text describing what the visualisation is and a floating info-button, in which

users are able to hover to receive additional details regarding the visualisation. See

Figure 4.15 for an example of how this chart is displayed on the Greedy page.

Figure 4.15: An Example of How the Satisfaction Measure Bar Chart is Displayed

on the Greedy Page

4.2.3 Round Overview

Within this section of the page, a visualisation delving into each round is displayed.

This visualisation allows the user to click through ’round by round’ of the election

and at each round displays the remaining budget, and the projects with the highest

satisfaction down to the selected project. The selected project is shown in green,

50

any any rejected projects are shown in red accompanied with a cross. A project

will be shown in red if it is has the next highest satisfaction score, however, there

is not enough budget remaining to select the project. As a result, the next project

with the highest satisfaction score is considered - and so on until a project is found

that can be selected with the remaining budget or until no more projects can be

considered. The user is able to use the previous and next round buttons provided

to move through the different rounds of the election. This chart is useful as it can

inform the user what project got rejected in each round and how close it was to being

selected, which is done in a straight-forward manner for a user as they can simply

examine the bar containing their project and compare with the top bar containing the

remaining budget. See Figure 4.16 for an example of how this anaylsis is displayed

on the Greedy page.

Figure 4.16: An Example of How the Round Analysis Visualisation is Displayed on

the Greedy Page

4.2.4 Satisfaction Measure Chart Coloured by Acceptance

Status

The final visualisation shown in the Greedy page is a copy of the satisfaction measure

chart from the beginning of the page. However, the bars are now colour coded to

display what project got selected with red indicating a rejected project and green

indicating a selected project. Similarly, with the previous chart, an explanation is

51

provided as well as a floating info-button to reveal additional details about the visu-

alisation. This chart is included to provide a quick overview for the users to illustrate

that it is not always the most popular project which is selected, but the most popular

projects within budget. See Figure 4.17 for an example of how this final visualisation

is displayed on the Greedy page.

Figure 4.17: An Example of How the Satisfaction Measure Bar Chart Coloured by

Acceptance Status Is Displayed on the Greedy Page

4.3 Software Stack

Jinja

Jinja is a powerful templating engine widely used within Python, primarily used to

generate dynamic HTML content for web applications. It facilitates the seamless inte-

gration of data into HTML templates, enabling developers to create flexible, readable,

and maintainable code. Key features of Jinja include:

• Template Inheritance: Jinja allows the development of a base template that

holds the common layout and structure of the website. Specific blocks within

52

this base template can be overridden by child templates, promoting reuse and

consistency across web pages.

• Control Structures: Incorporating loops and conditional statements within

templates is straightforward in Jinja, enabling the dynamic generation of web

pages based on varying conditions and data sets.

• Optimised Performance: Jinja converts templates into optimised Python

code, which can significantly enhance performance and is especially important

in high-load environments.

Jinja makes it possible to render web pages with complex, dynamic content efficiently

and with minimal code. Figure 4.18 demonstrates a basic example of a Jinja template

used to generate an HTML page. In this template, variables such as ’{{ page title

}}’, ’{{ heading }}’, and ’{{ user name }}’ are placeholders that Jinja replaces with

actual data when the template is rendered. Control structures such as ’{% if %}’

and ’{% for %}’ allow the template to dynamically alter the content based on the

provided data, making web pages more interactive and user-responsive. With respect

to the solution, standard HTML templates will be created for each of the visualisation

pages. Relevant information specific to each individual election will be parsed into

the template to dynamically render a web page unique to the queried PB election.

53

<html>

<head>

<title >{{ page_title }}</title>

</head>

<body>

<h1>{{ heading }}</h1>

{% if user_logged_in %}

<p>Welcome back , {{ user_name }}!</p>

{% else %}

<p>Please log in to see this page.</p>

{% endif %}

{% for item in item_list %}

{{ item }}

{% endfor %}

</body>

</html>

Figure 4.18: A Basic Example of a Jinja Template Used to Generate a HTML Page

54

ZingChart

ZingChart is a powerful and versatile JavaScript library designed for creating interac-

tive and responsive charts and visualisations [47]. It is widely used in web development

to render data visually in various formats, including bar charts, pie charts, scatter

plots, and more. The library supports HTML5 and can be easily integrated into web

applications, providing developers with a robust toolset to create highly customisable

charts.

ZingChart was chosen as one of the main visualisation libraries due to its wide variety

of chart types and high level of customisability and styling. It supports the specific

chart types that aid the round-by-round analysis of the MES voting rule, including

chord diagrams.

Google Charts

Google Charts is a versatile web-based toolset to create interactive, rich charts and

data visualisations within web applications [47]. ZingChart was chosen as the pri-

mary toolset for creating interactive graphs; however, some graphics were absent in

ZingChart, such as the Sankey diagram. Therefore, Google Charts was chosen as the

JavaScript library to create the diagrams that ZingChart could not.

Bootstrap

Bootstrap is an open source front-end framework that simplifies the design and de-

velopment of web pages and applications [48]. Its core features include a responsive

grid system, pre-designed UI elements (like buttons, forms, dropdowns, and alerts),

and JavaScript plugins that add dynamic behaviour to static HTML pages.

Bootstrap was used for its ease of use with ready-to-use components, which enabled

rapid development. Developers can easily incorporate complex UI elements without

the need to write extensive CSS and JavaScript code from scratch. While Bootstrap

55

offers a default theme, it is very adaptable, allowing developers to override existing

styles to create a custom look that fits the specific needs of their projects [48].

4.4 Architecture Overview

4.4.1 Pabutools

As discussed previously, Pabutools is a Python library that allows us to simulate

the outcome of different elections using various supported voting rules. It takes

an Object-Oriented approach to this problem and as such implements many classes

across many files and heavily utilises features such as inheritance and composition to

model and evaluate elections. These include classes to model entities such as Voters,

Projects, Ballots etc as classes as well as a range of sub-classes for more specialised

instance. However, interestingly the different voting rules are not modelled using a

class hierarchy but are instead implemented as a series of different functions, although

different voting rules functions do tend to share a common interface, no rules were

programmatically enforced.

We have created a diagram to visualise this common interface for voting rules in Fig-

ure 4.19, it is important to note that not all classes are shown in this diagram but

only the subset that are directly passed into a voting rule. There are also exist sub-

classes (as well as abstract base classes) for the classes that are shown in the diagram,

however we have omitted any inheritance relationships for the sake of simplicity.

56

Figure 4.19: A Partial UML Diagram for Subset of Relevant Classes and a

Generalisation of How It Connects to Voting Rule Function (Before Our Changes)

Below is a summary of all the main classes (from Figure 4.19) within Pabutools:

• Instance: An Instance contains the projects that are voted on, together with

other information about the election such as the budget limit. Importantly, the

ballots (votes) submitted by the voters is not part of the instance.

• Project: A Project represents projects that are voted upon by the voters. It

does not store any data related to votes but gives you access to data such as

cost and other metadata parsed from the .pb file

• Ballot: A Ballot is the class that represents an individual voter and stores

their votes/scores for the different projects. It also stores general metadata

related to specific voters, e.g. gender, location, etc. There are many different

sub-classes of Ballot for all the different types of voting schemes. These include:

CardinalBallot (voter assigns scores to projects), CumulativeBallot (voter

distributes a given amount of points to the projects), OrdinalBallot (voter or-

ders some projects according to their preferences), and ApprovalBallot (voter

indicates the projects that they approve of). Approval voting is the most com-

57

mon and simplest voting scheme used in PB elections and as such our visuali-

sations specifically target these type of elections.

• Profile: A Profile is simply a collection of ballots that all correspond to one

ballot type. As such there is a Profile subclass for each of the ballot types we

have listed above (e.g. CardinalProfile, ApprovalProfile, etc).

• SatisfactionMeasure: SatisfactionMeasure is a class representing the sat-

isfaction score of a particular Ballot. There are many different types of sat-

isfaction functions that all compute satisfaction in different ways which are all

implemented across various sub-classes

• TieBreakingRule: A TieBreakingRule implements different tie breaking

schemes that can break ties amongst projects. It takes a sorting function

within its constructor which is what it uses to determine how to reorder the

projects. There are a few different tie breaking rules provided by default in

Pabutools, such as: lexico_tie_breaking (project name ordered alphabeti-

cally) or max_cost_tie_breaking (ties are broken in favour of the project with

the highest cost).

As mentioned before, all voting rules tend to follow a similar pattern to the diagram

shown in Figure 4.19. However there are differences, in particular with MES, as it

involves additional classes that abstract some additional complexity that is involved

in computing the outcomes of MES. These involve the construction of two new classes

MESVoter and MESProject, see Figure 4.20.

58

Figure 4.20: A Partial UML Diagram for Subset of Relevant Classes and How It

Connects to the MES Voting Rule Function (Before Our Changes)

4.4.2 Data Capture

In the previous section we have seen how the main classes within Pabutools are re-

lated, and specifically how they connect to a voting rule function. One of our major

tasks is to implement a way to store/retrieve the data to perform analysis and gener-

ate our visualisations. Some of this data can be retrieved directly from the Project,

Instance and Profile objects that were initialised using data directly from the .pb file

(so we also avoid having to parse the .pb files ourselves). Data from these objects

will be easy to retrieve and do not require any significant effort. However, the key

data to retrieve for our visualisations is data that is computed during the calculation

of our voting rule. There are many ways we could achieve this; the simplest would be

to recompute using data from the same objects that are passed into the voting rule,

however this would result in duplicate code and also would not meet the customer

requirement of being easily extendable to all supported (and any future) voting rules.

It has to be designed in a way that is general, so that it can easily fit into any voting

rule but is also specific enough, such that we can store data that is specific for a par-

ticular voting rule. Since such a solution will involve modifying the existing voting

59

rule functions, we also have to ensure that we minimise any impact on performance.

Together with the customer, we explored two potential methods in which we could

achieve this. One method was to create a new object to store details and pass that

as an argument into a voting rule function. This argument would be optional, and

the function could then call methods on this object to store any required data. Since

the caller of the voting rule would be responsible for initialising this object, after the

function finishes computing we would have access to this object and can use the data

to generate our visualisations.

def voting_rule (..., details=None):

...

details.store(x)

...

details.store(y)

...

details = Details ()

outcome = voting_rule (..., details)

Use ‘details ‘ to generate visualisations

The alternative was to modify the return value of voting rules from a list of projects

to a new wrapper class that also has the option to store details.

def voting_rule (...):

outcome = Outcome ()

...

outcome.details.store(x)

...

outcome.details.store(y)

...

return outcome

outcome = voting_rule (...)

Use ‘outcome.details ‘ to generate visualisations

The customer preferred the latter mostly because it involved less significant changes

to the existing API, and a change similar to this had already been planned as part of

60

future refactoring. In Figure 4.21, we can see the new classes that have been created

to implement the proposed solution.

Figure 4.21: A UML Diagram for the New Object Returned by Voting Rules

Enabling Us to Store and Retrieve Data From Voting Rules (previously, a Voting

Rule Would Return Just a List of Projects)

This design went through numerous iterations, evolving alongside the changing re-

quirements of our visualisations until we arrived at this version. Below, we briefly

discuss each of these new classes.

• BudgetAllocation: A budget allocation is the new return value for voting

rules (replacing what was previously just a list of projects). It stores a list of

projects as well as additional information (via a AllocationDetails object)

for explanation purposes.

• AllocationDetails: This is used to store additional information related to a

specific run of a voting rule. It is a property of BudgetAllocation and exposes

61

methods that allow the voting rule to store data. Currently, there are two

supported voting rules: MESAllocationDetails and

GreedyWelfareAllocationDetails. Both have different sets of methods and

store their details in different ways (See Figure 4.21 for list of methods).

• MESIteration: The complexity of the MES rule meant it made sense to create

a further abstraction to store data related to an execution of MES. This class

corresponds to one iteration of MES (i.e. one project being selected), the main

idea behind this is that we should be able to entirely reconstruct an entire run

of MES using all the iterations. Other properties, such as voter budgets are

also stored as within this class. A list of MESIterations is stored as part of the

MESAllocationDetails

• MESProjectDetails: Within each MESIteration, there are also multiple

MESProjectDetails; one for each project that was considered during this it-

eration. They will be marked as either discarded or selected, and also store

other information about the project within a specific iteration. In addition, it

is important to note that the same project can appear in different iterations

with different instances of MESProjectDetails.

• GreedyWelfareProjectDetails: This stores information about the project

related to a Greedy run. A list of GreedyWelfareProjectDetails is part of one

GreedyWelfareAllocationDetails. There is a one to one correspondence with

projects in the election and instances of this class (unlike MESProjectDetails).

4.4.3 Analysis

After capturing and storing the data from the run of our voting rule, our next step

would be to develop analysis functions that can use this data (as well as data that

was already stored directly as part of objects initialised during the parsing of the

.pb files) to calculate more useful metrics that can form part of our visualisations

and explanations. Some of our analysis functions were implemented as ’standalone’

62

functions within an analysis submodule (following the existing convention), however

some were directly part of our Visualisation class (we discuss this in detail in the

next section). Analysis that is more specific to our visualisations we kept within the

Visualisation class and ones we felt had more use even outside the context of visual-

isations we added to the analysis submodule.

One such analysis function was computing voter flows, a two-dimensional dictionary

where flow[a][b] is the number of voters for ’a’ who also voted for ’b’. This dictionary

can then be used in Sankey diagrams and chord diagrams. These graphs are designed

to show the overlap in voting behaviour, making it clear which projects share a

common voter base with the project elected at the current round. The pseudo-code

for this algorithm can be seen below. In an election with n voters and m projects, the

worst-case run time would be O(nm2), where each participant votes for all projects.

for each vote in profile do

for i from 0 to length(vote) - 1 do

for j from i + 1 to length(vote) - 1 do

flow[vote[i]][vote[j]] = flow[vote[i]][vote[j]] + 1

flow[vote[j]][vote[i]] = flow[vote[j]][vote[i]] + 1

4.4.4 Generating web pages

The next big component of our changes to Pabutools would be implementing the API

that would enable users to generate the visualisations. When considering the design

of this API, we wanted it to be simple to use and not require many additional steps

on top of already running the election. Below is an extract from our usage guide on

how we can generate visualisations.

from pabutools ...

from pabutools.visualisation.visualisation import MESVisualiser

instance , profile = election.parse_pabulib("sample_election.pb")

outcome = method_of_equal_shares(instance , profile , sat_class=

Cost_Sat , \

63

analytics=True)

vis = MESVisualiser(profile , instance , outcome)

vis.render("./ output_folder", name="demo")

Although, the above example is for MES - it works in exactly the same way for Greedy

Welfare but we would instead use the GreedyVisualiser and pass in the outcome

returned by running the Greedy rule. If we look at Figure 4.22, we can see how all

the classes are related and how such an API could be implemented.

Figure 4.22: A UML Diagram for the Visualisation Classes and How They Connect

to the Classes in Figure 4.21

The sole public function available within the Visualiser class would be the render

method; this is what generates the HTML file(s) within the user’s specified output

folder and also with the specified name. It calls the _calculate method which is

responsible for performing some analysis but mostly restructures all the data into a

format that is ready to be injected into our predefined templates. This injection is

performed using the Jinja library (discussed in detail later). Almost all the data that

we inject into the template goes into JavaScript objects, where it is then accessed by

our different JS graphing libraries. We also use some of the data directly within the

HTML, e.g. in our dropdowns and title texts.

64

4.4.5 Web Pages

It will be difficult to talk in detail regarding the architecture/design of our web pages

since they vary a lot from page to page. However, all the web pages do tend to follow

the SPA-like (Single Page Application) structure, where the content on the page is

dynamically reloaded using JavaScript as opposed to having multiple separate pages.

There are also a few interesting points we can mention here specifically related to how

we have optimised our pages for performance. Given the size of some elections, some

of which will have within the range of 100+ projects, 10,000s voters, 50+ rounds,

etc we had to consider how we render all our visualisations/charts in JavaScript. For

example, we found that rendering all our visualisations all at once during page load

would result in a web page that will never load because it will eventually crash or

will take way too long (5+ minutes) for some large elections. This problem was really

only prevalent in the MES round-by-round analysis page because of the number and

variety of visualisations that are presented in each round. Thankfully, the design of

the MES round-by-round page doesn’t require all the visualisations to be generated

at once and we can instead only render the round that is currently being displayed

to the user. The exact approach we took to implement the solution to this problem

will be discussed in the later Implementation chapter (Chapter 5).

65

Chapter 5

Implementation

This chapter discusses the implementation process of our visualisations and expla-

nations. This includes various steps we encountered throughout our development

and any challenges we faced and overcame to deliver our final solution. As stated in

Chapter 1, our work is part of the Pabutools library; for this reason, as well as the

specification of our customer, our implementation had to follow a strict set of rules

to conform with the customer needs as well as the format of code within that library.

5.1 The Pabutools Library

Before examining our implementation in detail, we discuss the pre-existing Pabutools

architecture. This includes introducing relevant classes we build on, introduce, or

adapt to produce our final solution. Most notably, we discuss implementations of the

classes integral to developing our solution. First of all, it should be noted that our

customer implemented the initial class structure for the BudgetAllocation class.

This was to ensure that the class fit the customer’s specifications exactly and the

team could implement changes directly.

66

5.1.1 Data Capture Classes

The implementation of the BudgetAllocation and the other data store classes was

something that was fairly simple. The biggest challenge was designing the solution

itself. This was a very collaborative process since it involved changes to the existing

API of how voting rules were executed. Although the solution was designed to min-

imise any significant changes - it was a balancing act between that and still having

a flexible and easy-to-use system that enabled data capture within any voting rules.

The design process and the alternatives we considered are discussed in Section 4.4.2.

Both BudgetAllocation and the base AllocationDetails had simple implementa-

tions. The BudgetAllocation has an initialiser which takes in a list of Project(s);

the list of projects that are passed into this initialiser would be the same exact list

of projects that were previously just returned by voting rule methods. This will then

be set as a property of the class. Additionally, the initialiser also takes in an object

of type AllocationDetails, this is where we can can pass a specific instance of ei-

ther MESAllocationDetails or GreedyWelfareAllocationDetails (or one for any

future supported rule). This argument is optional since it will not always be required

to store details, and doing so in every run would unnecessarily impact performance

Not storing details in every run was one simple measure we took in our effort to

minimise any impact on performance. However even in the case that the user opts to

store details, we still had to design the system in a way that there is minimal impact

to the performance. The way we achieved this is by deferring any additional calcu-

lation needed for our visualisations to render time rather than during computation

of the rule. In other words, the methods used by the voting rule within any of our

AllocationDetails classes are only responsible for storing the raw data (and that

only). This means we only store variables that have already been computed as part of

the regular voting rule run, and so the impact on runtime will only be this additional

storing step. See Figure 5.1 for a clearer picture of how this works.

67

Figure 5.1: An Activity Diagram Showing the Responsibilities of the Individual

Components of the Projects

5.1.2 MESVisualiser

The MESVisualiser class is used for generating the visualisations web pages. It is

a child of the base class Visualiser. As it stands now, the base class does not

implement any methods shared across the different visualiser classes. This is be-

68

cause there was no potential for further abstraction between MESVisualiser and

GreedyWelfareVisualiser. However, it is likely that, as more voting rules are sup-

ported in the future, this base class could implement some shared functionality. In

this section, we will be going over the implementation details of some of the more

interesting methods that are part of MESVisualiser. A list of all the methods that

are part of this class can be seen in Figure 4.22 (in Section 4.4).

class MESVisualiser(Visualiser):

def __init__(self , profile , instance , mes_details , verbose):

def _calculate_rounds_dictionary(self):

def _calculate_pie_charts(self , project_votes):

def _calculate -avg_voter_budget(self , voters_budget , supporters):

def _get_voters_for_project(self , project):

def _calculate(self):

def _render(self , outcome , output_folder_path):

Figure 5.2: Code Structure for MESVisualiser Class

Calculating Pie Chart Data

The _calculate_pie_charts() method calculates all the data necessary for the pie

chart visualisations on the round-by-round page. The function returns a dictionary

containing the pie chart information for each round. For each round, all projects yet

to be elected are represented in pie charts. The pie charts for these projects show

how the voters for that project voted for the current project, hence having two sides

(those who voted for it and those who did not).

The dynamically generated text accompanying each diagram is another key part of

the pie chart visualisation. One crucial part of the text is the average budget that

has decreased among all the participants who voted for the project, as represented

in the pie chart. The _calculate_avg_voter_budget calculates the average budget

of the supporters of a project. With the budgets for all participants before and after

69

the current round was elected, the average budget decrease between supporters of the

other projects can be calculated.

Calculating Final Rounds Data

As we have mentioned before, the render() method is the main method of this class,

and it is what generates the web pages and also saves them to disk. The main data

that is passed into our HTML templates via Jinja is the rounds property, which is

a list of dictionaries containing data used to generate the visualisations. There is a

dictionary for each MESIteration (‘iteration’ and ‘round’ are used interchangeably

within the code but refer to the same thing). See Figure 5.3 for all the items that

form part of the dictionary. There is a main _calculate method that is called

by render and this method orchestrates the construction of this rounds object by

calling the other smaller _calculate_... methods; the main part of this is the

_calculate_rounds_dictinary method. This method works by looping through

each MESIteration that is attached to the MESProjectDetails and creates a new

dictionary for each one. We populate the dictionary by accessing information that

is stored within MESIteration and we calculate some further data by also looping

through each project that is part of each iteration. For example, one such metric we

need to calculate is the funding that is lost per project in each round; we do this by

looping through each project in an iteration and computing the difference between

the total voter funding for each project in subsequent iterations. All the required

data has already been stored within MESProjectDetails and MESIterations and

it is the role of these _calculate_... methods to simply further process them and

store the relevant details in rounds.

70

[

{

"name": "Sample Project",

"effective_vote_count": {

"Project 1": 32.2, "Project 2": 20.1, ...

},

"effective_vote_count_reduction": {

"Project 1": 10.2, "Project 2": 0, ...

},

"cost": 200,

"totalvotes": 33,

"initial_voter_funding": [12, 0, 13, ...],

"funding_lost_per_round": {"Round 2": 3, "Round 3": 10},

"final_voter_funding": 130,

"dropped_projects": ["Project 4", "Project 5"],

pie_chart_items: [...]

},

...

]

Figure 5.3: Structure of the rounds List Dictionary That is Passed Into Our MES

Templates Using Jinja

Render

The render method is the only ‘public’ method (Python has no strict sense of pub-

lic/private methods, but private methods are denoted with an ‘ ’) available in the

MESVisualiser class and it is what users would use to generate visualisations. It

takes in two arguments: output_folder_path and an optional name. The first is

self-explanatory and is the argument where the user can specify where to save the

generated HTML files would be stored. The second argument allows the user to spec-

ify the prefix of the file names that are generated, e.g. if name=‘parks’; the files that

are generated would be ‘parks round analysis.html’ and ‘parks summary.html’. This

argument was introduced at the suggestion of the customer as he thought it would be

71

useful to control the name of the files to avoid overriding existing files that have been

generated in the same folder. The implementation of this method is fairly simple and

just uses Jinja’s Template.render to pass our data into our HTML templates. We

load the Template object as a class variable using ENV.get_template and pass in the

path to our templates. The Template.render function actually just returns a string

so the final step is to write the returned string to an output file. It is important to

note that we do not just pass in our rounds property which contains data related to

each iteration of MES, but we also pass in other properties related to the election

itself, e.g. total number of votes, budget, projects metadata, etc.

5.1.3 GreedyWelfareVisualiser

The structure of GreedyWelfareVisualiser is very similar to the structure for MES.

For this rule, there is very little additional information that needs to be required

outside the run of the rule. This time we also don’t need any significant addi-

tional computation on the data and so unlike MESVisualiser, we only have one

calculate() function that creates the rounds dictionary - using the data from the

GreedyWelfareAllocationDetails class.

Calculating Rounds Data

Similar to the MESVisualiser, we have a rounds property which is a list of dictio-

naries which stores all the data required for our visualisations. We generate this list

within the _calculate() method which is called by render. If we see Figure 5.4 we

can see the data that is passed into our Greedy template.

72

[

{

"selected_project": {

"id": "...",

"name": "...",

"cost": "...",

"votes": "...",

}

"rejected_projects": [

{"id": "...", "name": "...", "cost": "...", "votes": "

..."},

...

],

"max_cost": 100

},

...

]

Figure 5.4: Structure of the rounds List Dictionary That is Passed Into Our Greedy

Template Using Jinja

From Figure 5.4, we can see that there is not as much data that is passed into the

template compared to MES. As such the calculating of this data is also relatively

simple. Unlike MES, we are not storing data for each iteration of Greedy but rather

we store details related to the individual projects themselves, their score (usually

number of votes), and which projects were selected and discarded. Every dictionary

in the rounds list corresponds to one selected project. We use the score to order

the projects and then loop through each project. We create a new dictionary if we

encounter a project that was selected; whilst we are looping, we are also keeping

track of all the projects that have been previously rejected; this is what we store in

rejected_projects. We also have another property max_cost to store the maximum

cost of all the rejected projects.

73

Render

We do not need to spend too much time discussing the render method since it works

very similarly to MESVisualiser, which we have already previously discussed. The

only main difference is where MESVisualiser generated two files using two differ-

ent templates; the GreedyWelfareVisualiser only has one template and generates

one file. There were not any significant challenges in implementing this method

since we already went through a thorough refinement process when we worked on

MESVisualiser.

5.2 Visualising MES

As stated in Chapter 4, creating the visualisations for MES was a two-step process,

giving an overview for each election, as well as an in-depth round-by-round analysis.

Whilst each section of this came with its own challenges, some critical underlying is-

sues were the complexity of the elections, with many rounds and, consequently, pages

required for the election. With these issues came some key concerns and considera-

tions needed to maintain the efficiency of running the rule on large-scale elections.

5.2.1 Summary Page

For the first step, we discuss how the summary page was developed to be consistent

with our design as well as any challenges that we have faced.

Reconstructing an existing election’s results page

When originally designing the summary page, we were provided with example Python

files from the customer, which we utilised as a starting point for our development

process. These files were created by Piotr Skowron and his research group, Piotr is

credited as one of the authors who first proposed the MES rule [12]. They included

a Python file to generate a simple overview table, similar to the one described in

Section 4.1.1 as well as a Python file to retrieve all the necessary data from the .pb

74

file to be used within the table. As a result, we deconstructed and analysed the files

to extract the necessary components to be able to create an HTML template and

have it function within our current system.

By using this approach, we were able to leverage existing code provided by the cus-

tomer while adjusting it to be consistent with our design. This proved to be beneficial

when utilising the first Python file to implement the overview table skeleton to con-

tain dummy data, as it was implemented seamlessly. Unfortunately, unlike the first

Python file, not all the existing code could be leveraged as simply within the second

Python file, owing to the fact the Python file used to retrieve data utilised a much

older version of Pabutools, the version being 0.12 whilst the current release version is

now at 1.1.7. Therefore, the file contained now depreciated methods for running the

MES algorithm of the election and contained incompatible variables, further, there

were no longer any documentation for this version of Pabutools and comments were

regrettably lacking. As a result, this required modifying the existing Pabutools pack-

age to retrieve the data we require or compute it ourselves with the variables already

present. This setback especially brought about challenges when handling rejected

projects, an issue that is addressed in the following section.

Dealing with Rejected Projects

The overview table was recreated using the example files, including most of its func-

tionality and the data being dynamically inserted using Jinja placeholders. However,

no rejected projects were included as well as the tooltips referencing them. This was

due to the necessary data, such as the rejected rounds, being unavailable at the time.

This was rectified by adjusting the MESIteration class to include a function that up-

dates the project details of a given project as discarded if it has been rejected. As a

result, when calculating the round by round dictionary, we simply check if the project

in the current iteration has been rejected and if so, retrieve the necessary details of

the project and append the list of rejected projects to the dictionary. Hence, allowing

us to simply inject the rejected projects into the HTML web page through Jinja as

75

normal.

Expanded Row

Moreover, we implement an additional details section for each row when it is clicked.

This involved utilising the hidden attribute on a <tr> tag to hide a table row and a

function to remove the attribute on the specific row that was clicked on. Initially, this

section only contained the hyperlink to the relevant round-by-round page; however,

additional content was subsequently included once the data from Pabutools was avail-

able. This content included the project metadata - such as the project’s description,

categories and any additional notes for the project. Additional content added also in-

cluded a list of the funding lost to each other project in the election and a dynamically

generated explanation for why the project was accepted or rejected. Implementation

for displaying the project metadata and the funding lost was straightforward: The

project’s metadata gathered in the visualiser class was retrieved and displayed line-

by-line, while code previously used for the summary chart tooltips (see Figure 4.5)

was reused to create the charts for the complete list of funding taken by other projects.

However, implementation for the dynamically generated explanations for each project

was much more complicated. This was because the explanation required for each

project could vary significantly, depending on details such as the acceptance status

of the project as well as the amount of funding lost to previous projects. While one

project could have been rejected simply because its voters were not able to afford

it even when using their total budget, another project might be rejected because

voter funds were used to afford other projects accepted in previous rounds (leaving

an insufficient amount of funds for this project). The former scenario requires a

short sentence or two comparing the initial total budget of the project’s against the

project’s cost, while the latter scenario requires a short paragraph describing how the

voter’s available funds changed from the start of the project selection process until

the round that the project is being considered in.

76

Simply using just one template for every dynamically-generated explanation was not

a viable solution - this would have lead to either too much unnecessary information

being included in the explanation for the former scenario defined above (potentially

causing information overload), or insufficient information being included in the expla-

nation for the latter scenario (leading to a poor explanation that users may find hard

to understand due to the lack of details). To implement a solution that avoided these

potential issues, four templates were created for the dynamic explanations, where

each template corresponded to a specific scenario for accepting/rejecting a project:

1. The project was accepted and had lost none of its initial funding. For these

projects, this meant that the projects voters used the funds initially available

to them to pay for the project’s cost. Note that this is always the case for the

first accepted project in the selection process.

2. The project was accepted, and had lost some of its initial funding. While

projects in this scenario did lose some of their initial funding to previously ac-

cepted projects, the voters for these projects had enough funds available during

this round to afford the project’s cost.

3. The project was rejected, and the initial voter funds available to it were less

than its cost. Projects falling into this scenario were rejected because they were

not fundable at any point in time.

4. The project was rejected, and the initial voter funds available to it were equal

to or greater than its cost. These projects were initially fundable, but their

voters lost too much funding to previously-accepted projects to be able to afford

these projects during the round that they are evaluated.

77

(a) An Example of the Dynamic Explanation Displayed for the

Third Scenario - When a Project is Rejected and the Initial

Voter Funds was Less than the Cost

(b) An Example of the Dynamic Explanation Displayed for the

Fourth Scenario - When a Project is Rejected and the Initial

Voter Funds was Greater than the Cost. Note How This

Explanation Refers to the “Funding Spent” Section Below it to

Further Support its Argument

Figure 5.5: Expanded Rows Displaying Dynamic Explanations for Scenarios

Involving Rejected Projects

78

Template explanations for projects described by the first and third scenarios were only

a few sentences long, as the results in these situations could be explained by compar-

ing the project’s initial funds with its cost. On the other hand, template explanations

for projects belonging to the second and fourth scenarios were much longer, as they

required descriptions of how the funds available to these projects changed over time,

on top of a comparison between the funds available to the project during its evalua-

tion against the project’s cost. See Figure 5.5 for how explanations varied depending

on which scenario applied to the project. Varying the lengths of each explanation de-

pending on the scenario helps ensure explanations contain an appropriate amount of

detail - an amount which avoids both ambiguity and information overload. Alongside

this, information such as available funds and project costs are shown in bold, high-

lighting them and guiding the user’s focus towards the most important information

in the explanations.

Dynamic explanations were implemented into the visualisations by inserting Jinja

conditional statements into the summary page’s template file. For accepted projects,

a conditional statement checks whether or not the project’s funding lost is equal to

0 - selecting either the second or first template explanation depending on the result.

For rejected projects, the statement instead checks whether or not the project’s initial

voter funds are less than its cost - using this information to either select the third or

fourth template explanation. The Visualiser class provides the information needed to

resolve these conditional statements, and the code is executed when Jinja populates

the HTML template with data.

Page Efficiency

The summary page provides an overview table as its stand-out feature which includes

rounds in each row, this was achieved by iterating through each round and dynam-

ically inserting data into each row through Jinja. This meant the HTML for the

web page would contain the HTML needed for all the individual rows, which on the

surface did not appear problematic. However, in large elections, this proved to be a

79

slight issue as the generated HTML files could reach to upwards of 60,000 lines and 5

MB in size. This meant on lower-end devices, the page was slow to load on a browser

and can become frustrating to use for a user.

Through examining the contents of the generated HTML files, we found that a CSS

style block was being repeated again and again. This CSS style comes from the

tooltip associated with each row’s chart that features the dynamically generated di-

agram displaying the most popular projects where funding was lost. This tooltip

utilised an inner HTML block and CSS to display the visualisation, however, this

also required iterating through a list of popular projects to generate the visualisation

through Jinja. As a result, this meant the inner HTML block was repeated for each

popular project displayed and again for each row in the election, resulting in large

amount of repeated blocks of code. One method of addressing this issue that was

attempted was to create a CSS class in the page’s main HTML block and factorise

it - similar to a fix for a related problem on the round-by-round page (explained in

Section 5.2.2). However, this method proved to be infeasible, as tags within the inner

HTML block were not able to access the CSS classes available in the main HTML

block. As a result, we instead collapse the style attribute of the CSS within the inner

HTML block to one line as opposed to a block of code. While these changes heavily

reduce the readability of the code involving the tooltip, they result in the file size

being reduced by 60% - 65% and the number of lines being reduced by 70% - 80% in

large elections.

5.2.2 Round by Round Page

As mentioned in the technologies section, Jinja is used as a templating engine to build

the web page dynamically. As the round-by-round page explains the decision-making

behind why a project was elected at a given round, there must be a variables for

each of the individual rounds. At each round, variables describe the metadata of

the project elected at the current round and information regarding how the other

projects were affected after this project was elected, for example, the effective vote

80

count of the remaining projects. These variables were stored in an array, with each

index representing a round. The information at index zero of the array represents

the first round, and so on. The Jinja templating was used to create a section element

containing the web page for each round. Each section element had an id equivalent

to the round number. This page is a round-by-round view, so only one section el-

ement can be displayed at a time. Intuitively, the page opens with the first round.

This is done by making the first round the active section whilst the rest of the sec-

tions remain hidden. The new page is made active upon page navigation, previous,

next, or selection, and the previously shown page is hidden with the rest of the rounds.

After implementation, the round-by-round page contained all the graphs discussed

in the design chapter. The diagrams were created using different software tools.

The chord diagram, pie charts and bar charts were all made using the ZingChart

JavaScript library, whilst the Sankey diagram was created using Chart.js.

Page Efficiency

The round-by-round page gives a step-by-step run-through of the election, explaining

why each project was elected at each round. The page updates for each individual

round; therefore, there are the same number of pages as there are elected projects.

Initially, the HTML for the web page included the HTML needed for all the individual

rounds, and section elements contained the HTML relevant to that specific round.

Only one section element was shown at a time, and the rest were hidden. When the

user requests the next round, the current section is changed to hidden, and the new

round section is active.

An advantage of this method is that once the page has loaded, navigation between

pages is extremely quick, and there is no waiting time for the new explanations to

load. However, this method has provided an issue for large elections. In an election

where many projects are elected, more section elements must be generated for each

round. This resulted in HTML files of 600,000 lines, which were never rendered when

81

loaded into a browser. Therefore, a new method of generating the HTML was re-

quired.

To address this issue, the HTML would have to be a similar size for all elections.

This would involve dynamically changing the elements rather than generating all ele-

ments and only showing the relevant parts whilst hiding the rest. A JavaScript array

containing all of the pertinent information for each round was created with the idea

that when loading the next round, the respective information could be drawn from

the array and the HTML elements reloaded.

As each diagram is accompanied by dynamically generated text, changing this at

each round was also required. However, storing the whole text for each round was

wasteful. To fix this issue, span elements with class names equivalent to the data

stored were used to ensure the text was still specific to the given round while not

storing duplicate text for each round. For example, there is a span element for the

project’s name elected at the current round. Upon navigating to the next round, all

instances where this span element was declared within the text will be replaced with

the newly elected project name.

Project Prioritisation

It quickly became apparent that it would not be possible to display all of the projects

in some of the diagrams. This was especially the case in the Sankey diagram and

the chord diagram. When more than six projects were included in these diagrams,

the information was difficult to understand, and the relationship between projects

became increasingly complex.

It became crucial to address this problem by prioritising the projects. Only the

top projects were listed in the diagrams, which required careful consideration. Es-

tablishing a metric for importance was a necessary step. Initially, the projects that

shared the most common voter bases were chosen, as these were the projects that

82

would be most affected by the current round.

In the Sankey diagram, an additional ‘other’ node represents the projects not included

in the most critical projects. This node helps the user understand the proportion of

votes the most relevant projects take up relative to the rest.

An example of how the diagrams become uninterpretable if all of the projects are

included can be seen in Figure 5.6. In this election, there are 20 projects. Therefore,

each arc can lead to at most 19 different arcs, resulting in 190 individual chords. As

we see in the figure, although the underlying patterns are captured, the graphic is

difficult to understand and draw any inference from.

Figure 5.6: An Example Chord Diagram Without Project Prioritisation

Initially, the prioritisation of projects was ranked by the amount of flow they take

up; this was chosen as it captures the majority of the flow of users’ votes. However,

using this method might not capture the most essential underlying patterns. Consider

project ‘A’ that has been elected at the current round if we also have project ‘B’ such

that all voters for project ‘A’ also voted for project ‘B’. In this case, we expect the

effective vote count for this project to decrease significantly. However, if the amount

83

of people who voted for ‘B’ is a small proportion of those who voted for ‘A’, then

it would not be included in the prioritisation. Therefore, other methods need to be

explored to capture all the patterns. Figure 5.7 demonstrates this issue. The chord

diagram on the left shows that the majority of people who voted for ‘Planting Trees

in the City’ also voted for ‘Benches for a Walkable City’; however, this relationship is

not captured in the chord diagram displayed on the webpage (diagram on the right).

This is an issue as this is a significant relationship to capture as electing ‘Benches for

a Walkable City’ is likely to affect the effective vote count of ‘Planting Trees in the

City’.

(a) Flow from ‘Bench for a Walkable

City’, ‘Planting Trees in the City’ and

All Other Projects

(b) Chord Diagram Showing the Top

Seven Ranked Projects (Not Showing

‘Planting Trees in the City’)

Figure 5.7: A Demonstration of the Chord Diagrams Not Including an Important

Project

As an extension to this, we examined the issue from a different perspective. Since

the round-by-round analysis should show the user exactly why a voter’s budget may

have been deducted because a project they had voted for was selected, we needed to

adapt this approach slightly. Say project xw wins this round. The budgets which this

84

will most impact will correspond to the projects which had the highest overlap in the

vote count. Say we have a matrix X corresponding to the pairwise interactions of

vote counts per project (xij corresponds to the number of voters who voted for i and

also voted for j. Say project i was selected; from here, we take the 6 highest values

in the row xi, which corresponds to the highest overlap of votes for that project (call

these values c1, ..., c6).

X =



x11 x12 · · · x1n

x21 x22 · · · x2n

...
...

. . .
...

xn1 xn2 · · · xnn


⇒ Xi,c1,...,c6 =



xii xic1 · · · xic6

xc1i xc1c1 · · · xc1c6

...
...

. . .
...

xc6i xc6c1 · · · xc6c6



Whilst in lots of cases, this method will yield the same results as the previous, this

captures more nuances in the data - say a project (b) which in general was unpop-

ular. However everyone who voted for b also voted for the project which won (a),

this highlights the reason why the budget voter budget was deducted for b and why

it may not have been selected.

In the PB research field, the exploration of which projects are relevant to an elec-

tion based on the proportionality of the voters they represent and satisfy is still a

very open question. Our approach is one which we felt was an effective balance be-

tween simplicity and ensuring the relevant information is passed to the user for the

explanation results.

5.2.3 Maintaining Efficient Runtime

Two key requirements R14 and R15 stated that the runtime of our visualisations

should scale with the number of votes and that only minimal adjustments should be

made to the base class. Since many elections have 100, 000’s of votes and 100s of

projects, ensuring our visualisations scale effectively is vital. For the following rea-

85

sons, we opted for two main approaches.

Firstly, ensure we do not calculate any additional information that is already cal-

culated by the rule. We achieved this by passing an additional parameter to the

method_of_equal_shares_scheme called analytics. This means we keep the re-

mainder of the base class the same. The updated parameters are as follows:

def method_of_equal_shares_scheme(

Additional Parameters

...

...

analytics: bool = False , # Our added parameter

) -> BudgetAllocation | list[BudgetAllocation]:

Resultantly, we only marginally edit the base class and fulfil our customer requirement

C4. While we ensured we maintained a focus on efficiency as much as possible, there

were still some prevalent issues. Most notably, this was the calculation of the budget

reduction in the pie charts. The reason this is significant is because of the calculation

required for the reduction in budget. For each round, we must iterate through all of

the projects, excluding the winner. From here, we calculate the round voters and the

non-round voters, taking the budget before and after the project selection. Figure

5.8 shows the code used to calculate the pie charts.

Function used for the voter budget calculation

def _calculate_avg_voter_budget(self , voters_budget , supporters):

if not supporters:

return 0

return sum(voters_budget[s] for s in supporters) / len(

supporters)

86

Calculate the information for the pie chart

This is done per project per round

round_voters = round["voter_flow"][project.name][selected]

non_round_voters = projectVotes[project.name] - round_voters

reduction = self._calculate_avg_voter_budget(

round["_current_iteration"]. voters_budget ,

self._get_voters_for_project(project),

) - self._calculate_avg_voter_budget(

round["_current_iteration"]. voters_budget_after_selection ,

self._get_voters_for_project(project),

)

Append the information as one of the pie chart items

pie_chart_item = {

"project": project.name ,

"roundVoters": round_voters ,

"nonRoundVoters": non_round_voters ,

"reduction": reduction ,

}

Figure 5.8: Pie Chart Calculations

Given that in many cases, there may be up to 100 projects present in the elections

where the number of rounds is a similar magnitude to that, this means the calculations

need to be performed 1000’s of times - taking a significant time to calculate. As with

the chord and Sankey diagrams, it was vital to use project prioritisation to ensure that

the first few relevant projects are shown and that we can ‘discard’ the later ones. This

optimisation ensures three things. First, the page size is decreased - since for each

round, we only calculate this information for (or up to) the first nine projects with the

highest vote count relative to the selected project, this significantly reduces the page

size. Second, this ensures the explanation remains as simple as possible “overload

of information reduces a user’s overall comprehension of the information expressed

to them” [49]. This approach ensures only relevant information is expressed to the

user. Finally and most importantly, this significantly reduces the runtime required

87

for calculating and displaying the pie charts - ensuring we align with our customer

requirement R4. We explore the decrease in processing time achieved in Section 5.2.4.

5.2.4 Runtime Analysis

As stated earlier, the requirement of the runtime being unaffected where the visuali-

sations are not running, we ensured that the only addition to the rule run is storing

data during the run. To verify this, we run the rule on 700 elections to determine the

change in runtime with analytics set to true.

Figure 5.9: Runtime Distribution for MES Rule with Analytics Set to True

Evidently, the distribution of runtimes indicates that, on average, the rule’s runtime

remains unchanged even with analytics. This is because we successfully ensure that

the only additional computation required when using the rule is to store the informa-

tion needed in our visualisation class. Resultantly, this means the computation time

is transferred to the other class.

Now, we explore the increase in calculation efficiency when only considering the top

88

nine projects based on the vote count overlap. Figure 5.10 shows the distribution for

the percentage increase in processing time before our optimisations, with the descrip-

tive statistics in Table 5.1.

Figure 5.10: Percent Increase in Time for MES With Visualisations - Pre

Optimisation

Statistic % Increase (Visualisation Time) Visualisation Time (s)

mean 417.8 13.28

std 718.2 80.89

min 0.0 0.0000

25% 58.4 0.0344

50% 146.9 0.2099

75% 394.6 1.3916

max 4587.8 1095.36

Table 5.1: Descriptive Statistics for Percent Increase in Time for MES with

Visualisations

89

Whilst it is clear that, in general, the increase in visualisation time is minimal - with a

median value of a 147% increase in processing time, the mean indicates the issue that

in some cases, there are exceedingly large increases in processing time. The maximum

of which is over 4, 000% corresponding to over 1, 000 seconds (or 20 minutes). This

is also not an isolated issue - as shown by Figure 5.10, there are a large number of

elections which significantly bring the mean processing time up. Each of these has a

common single factor - many projects highlight the issue with our current approach.

Given the issues displayed in the previous figures, we now introduce our optimisation

- only considering the top nine projects per round for pie charts. Figure 5.11 the

updated distribution for the times taken with our implemented optimisation. Most

notable, is the decrease for the times taken as a whole - there is a much higher mass

in the distribution towards the lower end, as well as a much higher mass within our

‘acceptable’ increase in visualisation time (≤ 300% corresponding to 84% of the visu-

alisations being within that acceptable region which is a far more acceptable metric).

Figure 5.11: Percent Increase in Time for MES with Visualisations - Post

Optimisation

90

Whilst the plot still shows some elections where the processing time is far larger, this

significant increase in time is still far smaller and within the bounds of acceptability.

In Table 5.2, we abbreviate Visualisation Time with (VT) and Percentage Decrease

with Optimisation with (PDWO). Most notably, the significant decrease in our maxi-

mum processing time - for the percentage increase as well as the time taken (78% and

77% respectively). This means the longest visualisation now takes under five minutes,

which is a reasonable time to wait for the explanation of a large and complex election.

Statistic % Increase (VT1) PDWO2 (%) VT (s) PDWO (%)

mean 152.1 64.6 2.137 84.2

std 203.8 72.3 17.51 78.4

min 0.0 0.0 0.000 0

25% 18.7 68.0 0.0103 70.1

50% 69.5 53.7 0.05951 72.7

75% 189.2 52.1 0.3444 75.3

max 1006.6 78.1 259.7 76.3

Mean Decrease - 55.6 - 77.3

Table 5.2: Descriptive Statistics for Percent Increase in Time for MES with

Visualisations - Optimised

Whilst there were additional optimisation in reducing the time taken for processing

such as reducing loops in our templating, reducing the line count of the files and

populating the page dynamically, this was the most significant optimisation we per-

formed.

91

class GreedyWelfareVisualiser(Visualiser):

def __init__(self , profile , instance , outcome , verbose):

def _calculate(self):

def _render(self , output_folder_path , output_filename):

Figure 5.12: Code Structure for Greedy Visualiser Class

5.3 Visualising Greedy

Another of our key deliverables was to develop an approach which can effectively ex-

plain the results of the Greedy Utilitarian Welfare Rule - as referenced in Chapter 1.

In our case, we focus on additive satisfaction rules. The default example this includes

is Cost Sat, which defines satisfaction as the total cost of the approved and selected

projects. Say we have two sets of projects S1, S2∧S1∩S2 = ∅ with satisfaction cs1, cs2

respectively. Then the satisfaction for S1 ∪ S2 = cs1 + cs2.

Since the majority of our previous work was spent on developing the framework and

visualisations for the MES visualisations, this meant we already identified a struc-

tured approach to developing the next set of visualisations. One of our key focuses

was ensuring the code’s modularity and reproducibility to extend visualisations to

different scenarios. First and foremost, this includes the structure of the class used to

generate our visualisations. Figure 5.2 shows the generated structure of the MESVi-

sualisation class. If we compare this to Figure 5.12, we see the similarities between

the classes we implemented. Evidently, the Greedy class contains a subset of the

functionality required for the MES visualisations. This is because - as we discovered

in Chapter 1, the MES rule requires far more information to be calculated in order

to generate the explanations for elections.

Additionally, we continue our same approach of implementing very few changes to

the base implementations of the rule themselves. As with previously, we add an

additional parameter to the original implementation of the rule as shown in the code

92

block below:

def greedy_utalitarian_welfare(

Original Parameters

...

...

analytics: bool = False , # Our added parameter

) -> BudgetAllocation | list[BudgetAllocation]:

The only additional code added to the base rule is storing additional information

in a BudgetAllocation object. This ensures we fulfil customers requirement R4.

Moreover, this results in two things, firstly, the runtime of the rule even with analytics

is impacted only marginally. Figure 5.13 shows the distribution for the increase in

processing time for elections with analytics set to True.

Figure 5.13: Time Increase with Analytics for 605 Elections. Mean: 0.385%, STD:

3.639%

The incredibly low mean increase in processing time, along with the high majority

of the mass being centred within ±3% of the origin time taken, implies that the

processing time differences are due to fluctuations in the load on the computer at

the time across different runs. However, there are a few outlier values that could be

93

attributed to elections with a large number of projects compared to the number of

voters or significantly large loads on the machine used for testing. Further analysis

into these metrics will be continued in Chapter 6.

5.3.1 Optimising the Greedy Visualisations

As with the visualisations of MES, due to the size of elections, a key priority was to

ensure the file size remained minimal and the added processing time was as small as

possible. First of all, we took a naive approach - bulk rendering all HTML without

consideration for the large files generated. Take the 2018 Municipal PB In Warsaw

shown in Figure 5.14. In this case, there are five projects which were rejected despite

their higher satisfaction measure score. This is a simple example for explicative

purposes, however in some cases there may be 20 − 30 projects rejected before the

selected one. The HTML code to generate each bar at this point took at least 6-8 lines

of code and additional CSS and text, generated below the graph shown. Considering

this is round 27 of the election, and each round consists of upwards of 30 lines of

HTML, this increases the time required for the templating engine to generate the

visualisations.

Figure 5.14: Greedy Visualisation Example

Through optimisations on the number of lines through our templating and populating

94

HTML by using JavaScript to dynamically visualise populate the page, we can reduce

the size of the files, the required work for the templating engine, and consequently

the time taken to produce the visualisations. Figure 5.15 shows the distribution for

the percentage increase in time taken when including analytics and visualisations

to the rule compared to the original time. Whilst these increases in time are very

acceptable considering the incredibly small mean processing time, the optimisations

can still improve our results.

Figure 5.15: Percentage Increase for Time Taken for Greedy Visualisations. Mean

5.124%, 0.00604s

Figure 5.16 shows our times taken for visualisation post optimisation. Evidently,

there is a significant shift in the mass of the distribution towards a zero percent

increase, indicating an improvement in the time taken to generate the visualisations.

Whilst the percentage difference in this case is significant, the mean time taken is

only 0.00513 seconds around a 15% improvement.

95

Figure 5.16: Percentage Increase for Time Taken for Greedy Visualisations - Post

Optimisation. Mean 3.004%, 0.00513s

5.4 Implementing Clustering on .pb Files

Given the background information from Chapter 2, we know the size of an election

(the number of voters) can exceed 100, 000 and consist of over 100 projects. Given

the magnitude of the data to analyse, this highlights a key issue when producing

visualisations which abstract large numbers of voters into one. For this task, we con-

sider clustering - “the process of grouping similar objects”. With the goal of merging

groups of similar voters into one. This would allow visualisations to be created for rep-

resentative groups of voters and consequently, contain far simpler visual explanations.

First, we define our dataset; in our case, this is a set of voters who vote for a set of

projects. Whilst in some cases, each voter has additional contextual information such

as age, voting method, and gender, in some cases, we have none of this. Therefore,

the information available to us is the set of the projects which the voter votes for.

This introduces us to the construction of our dataset X. For each voter i, we assign

the value 1 at xij if i votes for project j - one hot encoding the vector for the voters.

Before we begin clustering, however, we need to consider what a cluster of voters may

96

represent and visualise the results of the clustered data. Due to the dataset’s high

dimensionality (d), the visualisation of clusters is non-trivial.

5.4.1 Data Visualisation

For visualisation of the data in two dimensions, we considered two approaches first

Principal Component Analysis (PCA) and t-distributed Stochastic Neighbour Embed-

ding (t-SNE). PCA is the process of transforming data linearly onto a new coordinate

set such that the directions preserve the maximum variance [50]. Given our dataset

X, PCA transforms the dataset as follows:

X =



x11 x12 · · · x1d

x21 x22 · · · x2d

...
...

. . .
...

xn1 xn2 · · · xnd


⇒ XPCA =



x11 x12

x21 x22

...
...

xn1 xn2


Now, we are able to plot our first against our second principal components and vi-

sualise our data. Below we show some of our transformed datasets (elections) using

PCA - note that each of the datasets presented below are elections taken from Pabulib

[8].

t-SNE is a non-linear technique which focuses on preserving the pairwise variance

between data points at a lower dimension [51]. t-SNE stands out particularly when

visualising very high dimensionality data while maintaining the data points’ relative

locality. For our use this is particularly beneficial, we want to ensure that in two di-

mensions, voters who have voted for a large group of similar projects appear together

locally.

This algorithm can be summarised by a four-step process:

1. Compute the pairwise similarity in the high-dimensional feature space.

2. Compute the pairwise similarity in the low dimensional space.

3. Minimise the Kulback Leiber (KL) divergence.

97

4. Iterate until convergence.

Once again, we can plot the data in two dimensions upon completing our data trans-

formation. Below, we show some examples of elections which have been transformed

using PCA versus t-SNE.

Figure 5.17: PCA Versus t-SNE 2D Transformation Results - Poland Wroclaw 2018

As shown in Figure 5.17, in this case, PCA appears to show some clear groups of

clusters in the voter set, whereas t-SNE performs far worse on this. However, these

results clearly show that there are clusters in the data for this election result. This

is, of course, a promising result indicating that an election of over 50, 000 voters has

large sets of similarities within its voters.

5.4.2 Clustering Algorithms

As with visualisation, we have various options available to us. Since, in our case,

the number of clusters present in each election will vary significantly, we require an

adaptive algorithm for the dataset. Therefore, an algorithm such as K-Means is not

suitable since the number of clusters is a hyperparameter which we set. This is likely

98

wildly different based on the number of voters and projects. However, there are some

assumptions we can reasonably make:

1. There will be some projects which are inherently the most popular.

2. Some subgroups will likely vote for a similar set of projects - those in a similar

geographical area or families with children who likely have the interests of their

children at heart.

3. Some projects will be very unpopular; therefore, we can likely discard these

projects when considering the visualisations later on.

Based on the assumptions above, we chose Desity-Based Spatial Clustering of Appli-

cations with Noise (DBSCAN) as our algorithm of choice.

DBSCAN groups together closely packed points, marking points that lie alone in low-

density regions as outliers. This relies on two key hyperparameters: ε - the radius

around the point, and min points - the minimum number of points required to form

a dense region [52]. This algorithm works in the following steps:

1. Identify Core Points: - a point if at least min points are in distance ε.

2. Expand Clusters: - from each core point, if another point is reachable, it is

part of the cluster else it is labelled as noise.

3. Merge Clusters: - if a point is reachable from two core points, the clusters

are merged.

This has key advantages—most notably, the number of clusters is automatically iden-

tified based on the chosen hyperparameters.

5.4.3 Results

Now, we examine the results of the clustering. This explores the effectiveness of

clustering on election datasets. This includes the results of varying hyperparameters

and extraction of a ‘typical voter’ within a cluster.

99

Figure 5.18: Clustering Results Using DBSCAN with ε = 0.3, 0.2, 0.1 (Left, Middle

Right)

For this example, Table 5.3 shows the number of clusters. In this case, even though

there appears to be comparatively few clusters, the variation in the hyperparameter

values shows a fundamental issue of this method - for each election, we need to

adapt the hyperparameters to a suitable number of clusters for which to create our

visualisations.

ε Election Number of Clusters

0.3 Poland Wroclaw 2018 10

0.3 Poland Wroclaw 2017 18

0.2 Poland Wroclaw 2018 14

0.2 Poland Wroclaw 2017 23

0.1 Poland Wroclaw 2018 24

0.1 Poland Wroclaw 2017 35

Table 5.3: Number of Clusters for Varying ε Values

The second fundamental issue is the time taken to run the clustering algorithms.

First of all, the dataset must be transformed - we need to do this since, given the

high dimensionality of an election where d typically exceeds 30, to ensure DBSCAN is

efficient, we first transform the dataset using PCA, then run the clustering algorithm

on the transformed data. Figure 5.19 shows the time taken to run for DBSCAN on

varying election sizes (post-PCA) - each was run 10 times to calculate an average,

100

with the green bars showing the minimum and maximum times.

Figure 5.19: Time Taken to Run DBSCAN on Varying Size Elections

Whilst the time taken to run would be reasonable given that the algorithm had to

be run only once, since we would have to re-run the algorithm over a wide range

of hyperparameters for a grid search, this could very quickly turn into significant

lengths of time. Particularly if we were iterating over five values of ε and five values

of min samples (a comparatively low estimate). Therefore, this quickly becomes

unsuitable for larger-scale elections, particularly when a key customer requirement is

having visual explanations producible for any election regardless of size.

5.4.4 Conclusion of Clustering

In conclusion, whilst clustering showed some very promising results, we decided to

drop this as a primary focus of generating visualisations for the elections. Most sig-

nificantly, there is high variability when adapting an approach that works for all-size

elections. The significant difference from election to election, which would gener-

ate our dataset, means that finding a suitable set of ‘majority groups’ or groups of

voters which are similar is a very involved process with significant hyperparameter

optimisation required for each different election. This is unsuitable for this project

since it doesn’t align with requirement R14 that the running time of the PB rules

101

with explanations should not exceed 300% of the runtime of the initial rules without

explanations.

Whilst we are excluding this from our project in this case. We feel that further

research in this area is very valuable. Identifying which projects or groups are most

relevant has been a key issue in the PB research community; therefore, finding a

method that adaptively identifies ‘significant’ groups of an election is key to fur-

thering interesting explanations and results for the user. Particular areas of interest

would be analysing the representation of voters using MES versus the representation

of voters using Greedy Utilitarian Welfare. For example, taking the result of the

election and finding groups or clusters of voters who were proportionally represented

in the outcomes of the result. The incorporation of visual explanations, including this

information, would be invaluable in providing further insight and analysis of elections

for users.

102

Chapter 6

Evaluation

In this chapter, we write the evaluation of our project. We conducted multiple types

of testing, including unit, integration and user testing, and use all the information to

review the success of the product as a whole.

6.1 Testing

To evaluate the success and performance of the project we use a wide range of tests

throughout the entirety of the project development lifecycle. This means on a rolling

basis we are able to adapt the project, and add any backlog onto our later sprints.

Consequently, the iterative improvement of the project and the tools developed as

a whole occurs. Finally, in our original specification, we created a set of Testing

Objectives available in Figure 3.1. At the end of our testing, we conclude this with a

set of testing objectives to determine the extent of the success of the project.

6.1.1 Unit Testing

As an open source library that is continuously being published to PyPI (Python

Package Index), unit tests were an essential part of the package. We had to write new

unit tests for our new visualisation subpackage as well as modify existing unit tests

to account for the changes we made to existing voting rules to store data. Pabutools

103

uses the built in Python unittest library to create and run unit tests. There are also

automatic hooks setup on GitHub so that each PR runs all unit tests across all the

supported Python versions. There are also automatic reports of code coverage with

each PR, this allows our customer to easily check whether we have sufficient coverage

for every new line that we are introducing. See Figure 6.1 for one such report.

Figure 6.1: Code Coverage Report for PR #15 (pabutools/pull/15)

One of the new unit tests we wrote, tested the generation of our web pages end-to-

end; this was the test_mes_visualisation unit test. It simulates how a real user

would use our visualisation subpackage. It starts with loading one of the sample test

.pb files that already exist in the package, runs method_of_equal_shares on this

election with the analytics flag set to true (so we store the details of the run), and

then generate the visualisations using MESVisualiser. The test is successful if the

following all hold true:

• No errors/exceptions are thrown.

104

• Two files are created in the expected directory path.

• Both files contain at least a <!DOCTYPE html> tag.

• The length of the MESVisualiser.rounds is correct and is the same as the

number of projects that were selected.

Looking at the above list, it is possible to spot limitations and potential errors that

could leak and pass through this test. For example, we do not actually check the

correctness of the HTML files that are generated; this could have improved the ro-

bustness of the test. The reason we did not prioritise this is because since we rely

on Jinja to generate our HTML files there are certain built in mechanisms within

Jinja itself that will throw errors if we violate certain constraints. Another potential

future improvement could have been checking specific items within the rounds list

not just checking the length. The reason we chose not to prioritise this is because

we implemented separate unit tests for all of our analysis functions, but eventually it

would also be a good idea to test within this unit test as well to ensure the structure

of the rounds list is correct.

As mentioned previously, we also wrote unit tests for testing individual analysis func-

tions. These would not use real data from .pb files (like we did for

test_mes_visualisation) but instead we would create dummy data to run the anal-

ysis functions. This was following the existing convention that was already in place

and it ensured the unit test is more easily interpretable and also acts as a good ref-

erence for the analysis function itself. There were quite a lot of unit tests for testing

the execution of the different voting rules under variety of different conditions and

arguments. We did not have to modify all of them but only the subset of condition-

s/arguments for which our visualisation subpackage is designed to support. These

changes mostly involved, setting the analytics flag to true. and asserting whether

the expected details are correctly being stored.

105

6.1.2 Integration Testing

Due to the nature of this project and this being designed as part of the Pabutools

library. This means two things; firstly, that the library already has tests which must

be passed each time there is an update to the repository, as well as, us working with

the customer who is very familiar with the repository since they are the maintainer

and designer of it. Therefore, each time we would make a pull request, the customer

would go through the updates in detail and ensure that every time we made a pull

request, they are happy with what we had created.

To view our development and integration testing process we present Figure 6.2. First

of all, when we develop a new feature or update, we first create a new branch. From

here this means we are able to develop additional system components without im-

pacting the rest of the groups work or the code as a whole. When this feature has

been implemented, we first test the changes along. Does each additional component

work as intended, and does the requirement fit the specifications of our customer and

supervisor? From here, we test the system as a whole - ensure other rules or methods

work as specified with and without the visualisation options set to true. From here,

we are able to present our changes to our customers and have a meeting with our

supervisor, where we discuss the next steps, any changes or removals, and any addi-

tional tasks. From here, we create a pull request allowing our changes to be added

to the Pabutools library and become publicly accessible.

106

Figure 6.2: Testing Development Process

Through this process, we ensure that all of our new features and changes work to-

gether and on the system as a whole. Since this is a public library, it is essential to

ensure that any changes we make to the repository as a whole will not affect the sys-

tem’s functionality elsewhere. Particularly since there may be users using the library,

and if they were to update it, it would mean they are unable to use it. Finally, an

additional check is that before making a pull request, we run the unit tests for the

repository; if all pass, then this is one final indication that this may be acceptable to

merge.

It is important to note that passing tests alone do not necessarily indicate that the

system is working as intended. This means that we have to follow a rigorous testing

process to ensure that the system is functioning correctly. Much of our code is located

at the front end of the system, so any changes we make must be tested on a variety

of elections with varying numbers of projects and voters. It is essential to test each

107

round of visualisations thoroughly, as there are many cases where visualisations may

differ or scenarios where they may not work correctly. Therefore, we had to test each

update thoroughly before implementing any changes to the main repository.

Another key point is that since we are a group, each working on different branches

and features, we must ensure that this works as intended with each other’s changes.

Therefore, each time we joined branches, we would either merge or rebase the changes

depending on the group’s requirements. However, in some cases, if two different fea-

tures had been implemented on the same file, we would have to thoroughly test one

more time before pushing these changes. We did this in a similar manner to the

process shown in Figure 6.2. However, these tests would be done locally until we

were sure that the merged branches worked as desired; they could then be pushed to

the remote repository so the group as a whole could test the system. This constant

testing of each individual component and part of the system meant that we would

minimise the cases where we submit a pull request to the customer where the changes

are not functional or working as specified.

Finally, after each pull request, our customer would additionally test the system and

interact with the visualisations. This means they can provide us with any additional

issues or bugs in the system. Furthermore, since they have not developed the sys-

tem, they may more easily identify any issues since they may not know the intended

purpose of the visualisation changes.

6.1.3 Performance Testing and Bench Marking

In Chapter 5, we included benchmarking results for the decrease in the time taken

due to our optimisations. Whilst these tests tell us the general performance of our

system and consequently the achievement of the customer-facing requirements R14.

To gain a more in-depth understanding of the complexity of the elections compared to

the runtime of our algorithms and visualisations, we ran the test set of the elections

- off of the Pabutools library. This gives us results for almost 1, 000 elections, all of

108

varying complexity. Therefore, we are able to create a comprehensive idea of where

any performance bottlenecks are created.

Increase in Processing Time

For testing this, we consider the optimised solutions to our implementation - as we

discussed in Chapter 5; therefore, we will only briefly touch on this subject with a

quick review of the summary. Figure 6.3 shows the distribution for our results post

optimisation, the mean time taken for the rule with the visualisations applied was

152.1%. This achieves user requirement R13 and verifies that the visualisations were

run on time. Whilst there were, of course, some visualisations where the runtime was

far higher than the original - at around 1, 000% increase. Over 86% of the runtime

increases were within an acceptable range. Finally, the maximum time taken to

generate the visualisations was under 300 seconds, and being under five minutes long,

this is a reasonable time to wait for a very large and complex election.

Figure 6.3: Percent Increase in Time for MES with Visualisations. Mean:

152.1%, 2.147s

On the other hand, with Greedy, our results both pre and post-opsimisation were well

into the realm of acceptability. As shown in Figure 6.4, the mean increase in time

109

with our visualisations in 3.004%, well into our acceptable time range. Even without

our optimisation, this was still the case. However, both we and our customer felt it

was prudent to ensure that, in all cases, the solutions were as optimal as possible.

Figure 6.4: Percentage Increase for Time Taken for Greedy Visualisations. Mean:

3.004%, 0.00513s

6.1.4 Visualisation Time Performance

To further assess the performance of visualisation time and the increase in time taken

due to visualisations, we plot these metrics against each other and conclude some

comparisons on what dictates visualisation speed runtime. Additionally, we perform

linear regression and calculate the correlation coefficients with the R2 value and the

P-value. This will give us an indication on the relationships between the different

variables. Moreover, we will perform linear regression on the two variables giving us

further insight on this.

MES Runtime Analysis

A reasonable assumption for the increase in runtime due to visualisations would be

that both a larger number of voters and a larger number of projects would cause

110

a significant increase in the runtime compared to the original running of the rules.

However, Figure 6.6 indicates this is untrue. Evidently, the number of voters in the

election does not significantly increase the time taken to generate the visualisations

when compared to the original runtime. This is indicated by the incredibly low R2

and correlation coefficient values, as well as the p value being very close to 1. While

surprising, this could be explained by the fact that computing the voter budget re-

duction was the most time-consuming part of the visualisation generations. On the

other hand, the number of projects had a clear relationship with the increase in visu-

alisations; moreover, the R2 value for the increase is over 0.136; whilst this is a small

value, this still indicates there is a relationship between the two. Moreover, consid-

ering that the vast majority of elections involve fewer projects, it is harder to get

an exact indication. As we have stated previously, this aligns with our expectations

since our performance bottleneck is in the computation of the pie charts.

Figure 6.5: Percent Increase of Runtime With Visualisations Against Voters (Left)

and Projects (Right)

In the case of the raw visualisation time, this follows more closely with our expec-

tations. In general, it appears there is an increase of processing time for both the

increase in the number of voters and the number of projects in the elections. Figure

6.6 shows the correlations between the two variables and the increased runtime with

visualisations. In this case, both variables have an R2 value and correlation coef-

111

ficients of over 0.5. When taking the 10 projects with the maximum visualisation

times, they tended to have both a large number of voters and many projects. The

median number of voters was 95, 025 and the median number of projects was 162 -

only 0.52% of the elections in our dataset have a number of votes and projects larger

than this.

Figure 6.6: Increase of Runtime With Visualisations Against Voters (Left) and

Projects (Right)

In conclusion, it appears that both the number of voters and the number of projects

correspond to an increase in the time taken to generate the visualisations. However,

it appears that only the number of projects significantly increases the time taken for

visualisations relative to the time taken to run the base election rule. Implying that

the number of projects is the performance bottleneck for larger elections. And as

shown by the maximum visualisation times the effects caused by the larger number

of projects are exacerbated when the number of voters is high. Therefore, more

time should be allocated to produce visualisations when generating visualisations for

elections used in larger municipalities.

Greedy Runtime Analysis

As with MES, we run each election with the visualisations to calculate the visualisa-

tion time correlations. Across all our elections, the increase in visualisation is incred-

112

ibly minimal at a mean of 3% increase processing time. However, we still performed

an analysis similar to the one we did for the MES visualisations. This additionally

yielded surprising results; as shown in Figure 6.7, there is zero correlation between

either the number of voters or the number of projects.

Figure 6.7: Percent Increase in Processing Time for Greedy Visualisations

On the other hand, as with MES, there was a stronger relationship between the raw

visualisation times and the number of projects

6.2 User Testing

For our user testing, we primarily used close friends and family members to test our

system. Most of these users had never heard of or were familiar with PB or the rules

of Greedy or MES. The process for this is as follows:

1. State the definition of the rules to the user. As well as a piece of accompanying

information from the corresponding Wikipedia page [53].

2. Ask them a series of questions about their understanding of the rules.

3. Allow the user to have 5 minutes with the Greedy Page, then ask them a set of

questions.

113

4. Allow the user to have 15 minutes with the MES Page, then ask them a set of

questions.

5. Finally ask a set of summary questions on the PB rules to gather their under-

standing.

The questions and the introduction to the form are available in Table A.1 and Figure

A.1. Key objectives of this project are to increase the interpretability and explain-

ability of PB election results. Given that MES, in particular, is far more complex

than Greedy, we allow the user up to 15 minutes with the MES page to gather ad-

ditional insight and understanding of the rule. The main basis on the success of the

explanations is the increase of understanding to the rules to see if the user correctly

understood the rule and understands the outcome of the election.

Mainly, we use numerical data - asking the user to give a number between 1 to 10,

giving us a sense of the tool’s effectiveness numerically. However, we also ask more

difficult questions, such as the user explaining the rule in their own words. This

tests the user’s understanding of the topic since the user has to express this directly.

Finally, we ask four technical questions to assess the users’ understanding of the dif-

fering representation of voters and groups in MES compared to Greedy. The form for

the full set of questions is available in the appendix.

Additionally, to verify we achieved our objectives defined previously, we ask the user

a question such as “to what extent would you trust an election result given this tool as

an aid?”. This allows us to determine if the trust, understanding, and comprehension

of a rule and the result is understood. Furthermore, we allowed users to address any

complaints or issues with the page for future work.

6.2.1 Familiarity with Participatory Budgeting

First of all, we found it was necessary to check if users were previously familiar with

PB. Whilst this was not the case in the majority of cases, some of our family members

114

who had heard about our project had looked up PB. This meant that, in some cases,

they had a limited understanding of PB as well as some of the associated rules. Figure

6.8 shows the proportions for which voters are familiar with each rule and PB as a

whole. Whilst it appears in some cases the users have heard of PB, they are not

familiar with the rules beforehand.

Figure 6.8: Proportions of Testers Familiar with PB, Greedy, and MES

6.2.2 Effectiveness of the Greedy Page

For the Greedy page, the main way we assess the quality of it, is by comparing the

understanding of the rule before and after using our explanations page. Moreover, we

ask the user if they would trust the outcome of the election if was it given to them

by their local authority.

Firstly, Figure 6.9 shows the user’s understanding of the rule before and after using

our explanation page. Note that the user was given a few minutes on the Wikipedia

page to read through the information and gain a base level of understanding. From

here, the user was able to view the election result for five minutes, going through

the round-by-round and interacting with the page before continuing to answer the

additional questions. Evidently, there is a significant increase in the understanding

of the rule from all users and the mean score is now 8.88 rather than 5.04. This gives

us a numerical indication that the visualisations allow the user to understand how

115

the rule works specifically.

Figure 6.9: Comprehension and Understanding of the Greedy Rule

It should be noted that a large number of users did understand the rule initially, at

least to a good level, when accompanied with explanations for the initial definitions

of the rule. An example of a user with good comprehension was: “The rule takes

each of the projects available and sorts them by the number of people who voted for

the project. These are then selected in order of vote count.”. Whilst this is almost

correct, it does not take into account that the rule is run on a satisfaction measure

rather than purely the number of votes for the project. This was a typical example

of the responses we received, with the majority not understanding the idea of the

satisfaction measure.

Figure 6.10 shows the proportion of the testers who stated that if a set of projects

were decided like this in their local area they would trust the outcome of the election

given their understanding of this rule. This is very positive, since it shows the users

trust the outcome of the rule, and therefore likely understand the rule sufficiently.

Especially since they would be happy to support the result of an election such as this.

116

Figure 6.10: Question: Would you trust a set of projects decided in your local area

with this method?

6.2.3 Effectiveness of the MES Pages

To ascertain the effectiveness of the MES pages, we need to consider more information

than just their understanding. There are a wide range of aspects to MES that the

user must understand to properly view the election outcome; consequently, we must

test if our explanations and visualisations provide sufficient insight into these parts

of the rule. First of all, Figure 6.11 shows the increase in understanding of the rule

before and after using our visualisations when compared to the Wikipedia page. This

clearly shows there is a significant increase in understanding of the rules when using

our explanations. Even though this is still 5 out of 10, this corresponds to a user

whose original understanding was a 1, therefore, this is still a significant increase.

117

Figure 6.11: Comprehension and Understanding of the MES Rule. 1: No

Understanding, 10: Perfect Understanding

Additionally, we check which parts of the page show a sufficient understanding of

the MES rule and the election. For this, we checked whether the summary statistics

alone, the summary page for the election, and the combination of a summary page and

the round by round analysis contained sufficient information. Evidently, as shown in

Figure 6.12, as expected, the summary statistics of the election do not provide enough

information. However, there is a significant increase of support for the page summary.

This shows the budget allocation as well as the projects selected and their order. This

gives an overview of the results of the election as well as some simpler explanation

of the results. Finally, it is clear that users felt the page summary, in combination

with the round-by-round analysis, did provide sufficient insight into the details of the

rule. Since this was intended in our design to allow more details where necessary, this

shows the choice of a summary and round-by-round was a correct decision.

118

Figure 6.12: What Parts of the Pages Provide a Sufficient Understanding of the Rule

Since we included a range of visualisations for the rule. Particularly in explaining

the voter flow, the effective vote count (with the reduction), and the reduction of

the voter budget. We felt it was necessary to determine how successful these were

at achieving our goals. Figure 6.13 shows the information for these figures. First

of all, indicating how effectively the voter flow was shown in the chord diagram and

the Sankey diagram. This aimed to show how many voters also voted for different

projects. Evidently, on average the users found this very effective and they were

able to see clearly what was happening at this stage of the rule. Additionally, the

effective vote count charts were also very effective, they showed the users why each

of the projects at this point may have been elected, and how other projects that were

popular may have been discarded. Finally, we see the pie charts. Whilst this was not

ranked as highly as the other two, in general the feedback was still positive. Partic-

ularly when the users had a better understanding of the MES rule. This aligns with

expectations, since the pie charts showcases the budget reduction for each of the vot-

ers. This is a more technical part of the system, therefore the users who understood

the nuances in MES better also found the information in the pie charts clearer.

119

Figure 6.13: How Effective and Clear Are Each of the Figures in Our Visualisations

Following from these charts, we ask the users if they understand the more technical

concepts within the rule. Figure 6.14 shows the result of this. Firstly, we consider the

concept of an equal share - the idea that every voter has an equal budget available

to them. This is an integral part of the MES rule, and ensures that each voter has a

proportional representation in the system. Overall, the understanding of this is pos-

itive, however there are some shortfalls. This indicates that for some users a further

explanation about the equal share that every voter has would improve the system.

Second, we see the effective vote count chart, this indicates that each project has a

vote count which adapts when the voters budget is reduced. Once again, whilst in

general there is a good comprehension of this, there is one user who did not under-

stand this at all, which is negative; they evidently also appeared to have struggled

to understand the rule as a whole. What was positive however, was that users in

general understood better that the support for a project may reduce as time goes on.

This implies they understand the basis of the rule even if they do not understand the

specific concept of effective vote count.

120

Figure 6.14: Understanding of MES Nuances and Specifics

Finally, since a key objective of our project is to ensure that people support PB and

also trust the results of the rule. We checked that users supported this, and evidently

this is very strongly the case. This shows that, overall, the project achieved this

objective, particularly since there is no one who would not support PB in their local

constituency and no one who would distrust an election result decided by this.

Figure 6.15: Support and Trust for PB

In conclusion, the feedback from users for this report was very positive. Whilst there

were some users who did not understand some of the specific intricacies of the rule,

they all said that their understanding of the rules improved - both for MES and

Greedy. Moreover, they felt that our visualisations and the ability to go through the

steps of the rule were very effective, particularly seeing how the budget available to

voters was reduced as time went on. We established that having a summary page with

a round-by-round analysis was very effective and that, in general, we provided the

121

information necessary for users to explain the election result properly. This feedback

shows where our project achieved its goals and the way it could have achieved them

better.

6.2.4 Improvements

While the vast majority of the users stated that the tools were very effective and

helped them understand the rule and the reason for a specific outcome, users suggested

a set of improvements.

• Allowing Comparisons: Whilst the users were able to view the elections side

by side to get a comparison of the election. This was something they had to do

manually. A common note was that a side-by-side view within the visualisations

themselves would be ideal. Particularly if the user were able to toggle these on

and off. Since we only have two rules implemented at the time, this is still a

relatively simple change and could easily be done with a budget allocation bar

- this would show the difference between the rules directly.

• Allowing more Interactivity: Despite the fact the users are able to hover

over the charts and view more information. Many users stated it would be

interesting to be able to edit the metrics about different projects. Say for

example, they could edit the cost of a project, this would mean a higher number

of voters would need to support it (in MES) for it to be elected. This gives users

further insight into the rules and their specifics or nuances. Note, however, that

this would require access to a ‘backend system’. However, for future use, this

library could be used to create visualisations, and then the rule could run in

the background while there is an update.

• Additional explanations about specifics: There are, of course, some met-

rics that are not trivial to understand, particularly for our everyday users. As

shown by the graphs in Figure 6.14, some users appeared to struggle with the

specifics of the rules for vote count reduction and effective vote count. If we

122

were able to link to specific examples of the rule or articles in depth, this may

assist in understanding here.

• Being able to create elections: Some users stated they would like the ability

to make their own elections. For example, creating an election with 10 voters,

and 5 projects would show how the rules work at a very low level.

• Ensuring different languages: Since PB is currently implemented in coun-

tries outside of English-speaking countries, having the option to change the

language allows users from those nationalities to read the pages without any

additional work.

The feedback from users is invaluable for future work and advice. Ensuring that the

system is tested by users from all backgrounds is vital for further development and

ensuring that our work is effective. From a combination of the results of our user

testing in our graphs and the specific feedback taken from users, we were able to

deduce any strengths and weaknesses within our implementation accurately.

6.3 Testing Objectives

As part of the success criteria for the project, we created a set of test objectives.

These were created as an additional way to measure the project’s success. To say

we have successfully achieved this, we require verification from user testing or from

having fulfilled a requirement from Table 3.2. These are shown in Table 6.1.

123

Code Achieved Description

TO1 Y We successfully built a set of tools that visualise the explana-

tions of outcomes for PB rules. We ensure all relevant infor-

mation required to understand the project selection is present.

In the case of MES, we added a summary page which allows

the user to view the overview of the election. In case more

detail is required, the user can now select a project on the

summary page and go to the round-by-round analysis for the

election. Moreover, we verify that we achieved this, as shown

in Section 6.2. Evidently, the vast majority of users signifi-

cantly increased their understanding of the rule and were pro-

vided with sufficient information to understand the election

outcomes.

TO2 Y As shown by the graphs in our user testing section. Our

tool improves the explainability of the PB voting methods.

Particularly in the case of MES, there is a more significant

increase here since most users were far less able to understand

MES initially than Greedy.

TO3 Y To ascertain whether we successfully achieved this objective,

we asked the users a question - to what extent would the user

trust the results of the election were it presented to them.

The average score here was 8.96, meaning we can conclude

that this testing objective was also achieved.

TO4 Y The tool has been successfully (and continuously) integrated

into the Pabutools library. This was achieved with a series

of pull requests approved by our customer and now available

to the public using the Pabutools library. This additionally

means that any contributor can further the work on both the

visualisation side and the general research for PB.

124

TO5 Y This objective was partially achieved. We originally looked

into using clustering to look into methods to abstract groups

of voters into a single one. Whilst we did not adopt this for

our final solution, we did adopt a different implementation.

When we had to consider only a subset of the projects, we

took the projects with the largest overlap of voters. This

means we ensure only the most relevant information is main-

tained for the user.

Table 6.1: Testing Objectives

6.4 Fulfilment of Aims and Objectives

In this section, we consider the original set of requirements that we gave for the

project and compare how successfully we achieved them at the project termination.

Using this, we can directly measure the success of the project compared to our initial

goals.

Our requirements were prioritised using the MoSCoW (Must, Should, Could, Won’t)

method. This very easily allowed us to create SMART objectives (Specific, Measur-

able, Achievable, Relevant, Timebound), which we assess in this section. For this, we

take the requirement codes from Tables 3.3 and 3.1 and outline the extent to how we

have achieved this: Y (Yes), N (No), P (Partially). From here, we can assess what

proportion of deliverables were achieved and any adaptations to the original work

plan.

125

Code Achieved MoSCoW Description

R1 Y M We developed a set of rules which help visualise

the outcomes for PB rules.

R2 Y M The tool was embedded into Pabutools. And

integrated with frequent pull requests.

R3 Y M We added an additional parameter for visuali-

sations, which otherwise do not adapt the base

class.

R4 Y M The runtime of the rules is unchanged without

the visualisations. Additionally, even with the

visualisation set to true, the runtime of the rules

is unaffected.

R5 Y M A new set of classes were created from scratch

which allow the storing of of additional infor-

mation required for the visualisations.

R6 Y M We adapted this approach since we established

that we require the rule to complete and pro-

vide us with all information before creating the

visualisations. Therefore, we store all required

information during the rule run and then begin

the visualisations.

R7 Y M We explain the outcome of the MES rule with a

round-by-round analysis and a summary page.

This allows the user to have multiple levels of

details, ensuring the page is both

126

R8 P S We implemented the Greedy Utilitarian Wel-

fare rule visualisations. Additionally, we allow

for the extension to further rules very simply.

Implementation of Phragmen’s Voting would be

further work for the project.

R9 N C That was not implemented.

R10 Y C To show the budget allocation, we included a

summary page. This gives a project-by-project

breakdown of the budget allocation. And out-

lines where projects were selected or rejected.

R11 Y C For our MES implementation, the user can go

through round by round and view each section

of the election. From here, they are able to

hover over bars in a bar chart or flow on the

chord diagram. This shows the additional in-

formation to the user and allows for interactiv-

ity. In the case of the summary page, the user

is able to hover over the budget allocation and

view where the budget has been allocated.

R12 N C Whilst this was not implemented directly, the

two visualisations can be run simply after one

another. These can then be displayed side by

side to view the election results.

R13 N S After testing a wide range of different methods

for clustering, we decided not to adopt this for

our final solution due to the time taken to suc-

cessfully calculate clusters in elections.

Table 6.2: Achievement of Functional Requirements

127

As is evident by the table above, in the majority of cases, our requirements were

achieved. In particular, in all cases, our Must objectives were achieved. These were

the basic requirements to ensure that this project was successful, all achieved to a high

standard. Moreover, the majority of our Should and Could objectives were achieved;

however, not for all cases, including R9,R12,R13. The most notable objective we

did not implement is R9, since that would have been an additional rule that would

have been implemented and therefore explained more effectively, and consequently

furthered the explainability of PB rules.

Now, we consider the non-functional requirements of the project to gain further insight

into what we have and have not achieved in our end results. For the following table,

when we refer to R14.M, R14.G, we mean for MES and Greedy, respectively.

Code Achieved MoSCoW Description

R14.M Y S This requirement was achieved for 86% of

elections tested on. There are, of course, cases

where this is not possible, where there is a

combination of lots of projects and lots of vot-

ers where voters vote for larger numbers of

projects at a time. The mean runtime of the

visualisations is around 150% of the runtime

of the rule.

R14.G Y S This requirement was achieved with 100% of

elections tested on. There was a mean run-

time increase of around 3% when using our

visualisations.

R15 Y M As shown by the plots in the section 6.1.4, the

runtime scales very well for larger elections

both regarding the number of projects and the

number of voters.

128

R16 Y M Our visualisations pages are very intuitive

to use. Using common UI principles, and

an intuitive UI design, the created visualisa-

tions are trivially navigable. Additionally, we

have created additional documentation for the

Pabutools library meaning a user who wants

to generate the visualisations can easily do so.

R17 P C Whilst the visualisations are not designed for

mobile devices, we decided that the visuali-

sations should be designed for computer use

since there are a large number of graphs and

accompanying text which require the user to

have a large screen for a clear overview. More-

over, the pages are interactive, allowing the

user to hover over the charts and tooltips and

view further information.

R18 Y M All data is accurately presented. We pass in-

formation directly from the rule that was run,

and verify through testing that the calcula-

tions are accurate.

R19 Y C The classes we created follow a clear struc-

ture that can be extended to different types of

rules easily. Additionally, the way templating

is done can be inferred very easily from the ex-

isting implementations for each rule. Much of

the code can be re-used from rule to rule - for

example, voter flows or project vote counts.

R20 M N This was not implemented.

Table 6.3: Achievement of Non-Functional Requirements

129

For our non-functional requirements, we implemented all but one - ensuring that the

visualisations are accessible for disabilities. Whilst this was a must requirement, this

was also not integral to the effective use and running of the tool. Therefore, we pri-

oritised additional features and rules rather than implementing this change. This is,

of course, something that should be extended for future work. Finally, we will com-

pare the objectives from Table 3.1 with to the extent that we have achieved them,

to view our projects success as a combination of the features implemented as well as

the objectives achieved.

Code Achieved Description

O1 Y Our user testing indicated that the tool explains and displays

all relevant information and ensures that the user can view

everything they need - for both Greedy and MES visualisa-

tions.

O2 Y The visualisations for both MES and Greedy ensure that they

improve their understanding of the rule. The user feedback

indicated that they understood the rules very well after using

the page, as well as understood why the outcome happened.

O3 Y The users stated that they trusted an election’s results and

would support PB elections in their local area. They did,

however, mention they preferred that MES be the rule that

dictates the selection of projects due to the better represen-

tation of the voters.

O4 Y The tool is available on the Pabutools library with accom-

panying documentation. This means any person with access

to Python is able to use the resulting visualisations. Most

notably, they provide some part of a process that allows the

explanation of why a result occurred and closes the gap be-

tween the additional explainability.

130

O5 P The tool does limit the amount of data available to the user

as to ensure they are not overwhelmed and the visualisations

look effective. Additionally, we filter out further projects by

taking the others with the relative vote count (the highest

number of votes for projects other than the one selected that

round that the voter also voted for).

O6 Y For our MES implementation, we have a summary page which

gives a higher-level overview to the user. This includes the

breakdown of the budget allocation and the order in which

projects were chosen. Then, they can view the round-by-

round analysis of the rule run. Moreover, for the Greedy vi-

sualisations, the user can view the graphs in an overview and

filter through them in ways they like for more detail. Finally,

there is a round-by-round analysis, which goes through cases

in detail where the user may not understand why a particular

project was chosen.

Table 6.4: Achievement of Project Objectives

Robustness, Accuracy and Correctness Testing

We use various methods to measure the robustness, accuracy, and correctness of the

visualisations we generate. First of all, to ensure that the visualisations work on any

type of election in the ‘.pb’ file, we ran the visualisations on all of the elections from

the Pabulib site. This ensures that regardless of the outcome or type, the visualisation

works correctly in these scenarios. Moreover, when creating sample elections within

Pabutools, we can test lots of scenarios - the projects may not have any description or

be missing data that a typical election file would have. This ensures once again that

the system works regardless of input. Since we need to verify that the visualisations

work correctly additionally (the visualisations can generate without causing an error

131

within Python), we are required to manually go through the pages and ensure that

there are no issues in any of the visualisations or parts of the page. In the case of an

election created within Pabutools in Python, the lack of information will mean only

the available information will be displayed.

Conclusion

In conclusion, when comparing the requirements we originally set to the ones we

achieved, we can conclude that the project has been a success. Whilst there are a few

objectives we did not implement, these are non-integral to the success of the project

and were typical could or should objectives. Moreover, the project still achieves our

goals. We can clearly see through our user testing that our project objectives were

achieved for the rules we implemented. They allow for a range of details, simplify

the PB voting explanations, and ensure that users trust and understand the outcome

of an election. Whilst this is the case for MES and Greedy, this project would have

been more of a success if we had produced visual explanations for a wider set of

rules. Unfortunately, time did not permit this. However, we did lay the foundation

for providing further visual explanations and a framework to do this repeatedly for

the Pabutools library.

6.5 Limitations

Alongside the goals reached in the development of the project, there are limitations.

We outline these in the following list, alongside reasons for their relevance.

1. Comparison Between Voting Rules - Our visualisations do not directly

allow the comparisons of voting rules on the same page. This was a key bit

of feedback provided to us by the user testing. Outcome comparisons would

help users improve their understanding in areas where different rules select

different projects. Key examples where this would work effectively are on a

summary page, showing the budget breakdown for the different rules. This

might illustrate the benefits of MES versus Greedy, showing that voters from

132

different groups are better supported or that the voters are better satisfied in

the election. While this was something that we considered implementing, the

customer - later on in the project’s timeline - preferred that we not focus on

this directly but rather on the implementation of explanations for the Greedy

rule. This is, however, future work that should be considered and developed,

as discussed in the following chapter.

2. Visualisations for Other Voting Rules - Visualisations are currently only

available for the MES and Greedy voting rules. To ensure the completeness of

the package, the visualisations should be built in the future to cover all of the

rules implemented on the Pabutools site.

3. Support for Non-additive Utility Functions - Our Greedy visualisations

currently only work when using an additive utility function. This means we can

only generate the elections for some utility functions - Cost Sat, for example.

Future work should cover this for all sorts of utility rules, as with works for our

MES explanations.

4. Labels in the Budget Allocation Chart - From user feedback, our budget

allocation chart could contain numerical labels that display important informa-

tion in the graph. This would improve the chart’s clarity, as well as help users

absorb the information contained in the visualisation with just a glance. Exam-

ples of numerical labels that could be added to the graph include the cumulative

cost of the projects at the end of the election and the election’s budget.

5. Visualisations of Voter Satisfaction - Our visualisations are used to explain

the outcome of the election rather than visualise statistics about the results - the

cumulative satisfaction of the rule. Further visualisations include the location

of the projects, the different groups, and the locations of voters who had the

highest satisfaction. Having an all-inclusive resource that provides outcome

visualisations and statistics as well as an explanation for the outcome would be

valuable, as it would provide a single resource for all visualisations.

133

6. Construction of Dummy Elections - Being able to construct ‘mini-elections’

within the pages directly - such as the ones from Pref.tools [40] - would be very

useful. This would allow users to update the information given by a sample elec-

tion and create their own toy example (e.g. an election containing 10 voters and

5 projects). Allowing the construction and execution of custom mini-elections

on various voting rules enables users to test what decisions these rules make in

different scenarios, potentially aiding them in understanding of how these rules

work.

134

Chapter 7

Project Management

The aim of this chapter is to discuss how the project was managed as a whole. This

includes any issues and difficulties that were faced during the project. At the end of

this section, a discussion on the legal, social, ethical and professional issues is included

- demonstrating that our project was conducted responsibly.

7.1 Project Methodology

Throughout this project, an Agile methodology [54] was utilised as it was anticipated

that plans and ideas would change over the course of the project. This is especially

the case given the nature of this project due to the high possibility of requirements,

priorities and scope changing unexpectedly. The Agile methodology used contained

a mixture of elements from the Kanban and Scrum methodologies, taking advantage

of the features that were most suitable for the project from each framework.

Kanban is an Agile methodology aimed at visualising tasks, centered around using a

Kanban board to keep track of these. From this methodology, a Kanban board was

used to assist in distributing tasks and keep track of who was assigned what. This

approach has been known to improve visibility and productivity [55]. The Kanban

board used throughout this project was included in Notion [56], an application that

was used extensively to keep track of the project. See Figure 7.1 for an example of

135

how a Kanban board was utilised in one of our sprints.

Figure 7.1: An Example of how the Kanban Board was used within a Sprint Cycle

In contrast to Kanban, Scrum is an Agile methodology where incremental versions

of a product are delivered in short timelines through the use of sprint cycles. This

approach has been linked to higher productivity, faster delivery and higher quality

work [57]. A two-week sprint cycle was used for the project in order to deliver a

product that satisfied the requirements set. See Figure 7.2 for an example of how

a two-week sprint cycle was conducted. As the diagram shows, the sprint cycle’s

first phase involves sprint planning. This took place at the end of the stakeholder

meeting from the previous sprint and involved picking features to implement during

the upcoming cycle and assigning people to complete these tasks. The next phase of

the sprint involved implementing the new features, with weekly stand-up meetings

conducted during this part of the sprint to discuss the progress made and tackle

any issues affecting productivity. Following this, a meeting with the stakeholder

(in this case, the customer) took place, where current changes were presented to

the supervisor and customer. These stakeholders would then provide feedback, and

the backlog would be adjusted accordingly. The penultimate phase evaluated the

completed sprint’s effectiveness and made changes to future sprints if necessary. On

136

top of this, any feedback from the stakeholders during the stakeholder meeting were

addressed. If it were required, a pull request would be submitted to the Pabutools

repository once the customer was satisfied with our current implementation. Finally,

planning for the next sprint would begin at the end of the stakeholder meeting.

Figure 7.2: The Summary of a Typical Two-Week Sprint Conducted During the

Project

7.2 Planning

In this section, we discuss how the project was planned in order to meet the require-

ments and deliverable deadlines set.

7.2.1 Feasibility Study

A feasibility study “is an assessment of the practicality of a proposed plan or project.

[It] analyzes the viability of a project to determine whether the project or venture is

likely to succeed.”[58]. We considered various aspects of the project to determine if

it could be done, with some of the main topics including:

• Technical Issues: We determined we would not need any specialist software

or code to do this. Our work was to be implemented onto Pabutools; therefore,

ensuring there were minimal dependencies or additional libraries was key. As a

result, we determined that we had all the required software available to us.

137

• Project Scope: Before the project specification, we defined a scope. Agreed

upon by the team, our supervisor and our customer. This scope, along with our

Objectives to define it, was SMART, and our requirements were prioritised using

MoSCoW. Through our prioritisation, we additionally ensured that even in the

case of significant delays or development issues, we could deliver a minimum

viable product (MVP), ensuring the successful delivery of a working system to

the customer.

• Legal Issues: While there were countless legal and social issues to consider

(since we were building on top of Pabutools, which follows EU GDPR rules),

the data we were working with adhered to these rules, meaning that legal issues

should not cause any disruption to the project. Legal issues are further discussed

later in this chapter.

Based on the considerations made in this section and the identified risks for which

we had planned mitigation strategies, we determined the potential issues related to

these aspects would not make this project infeasible. Therefore, after delivering and

reviewing our project specifications, we determined that we could begin the system’s

implementation, design, and development.

7.2.2 Work Breakdown Structure

During the project’s inception, a Work Breakdown Structure (WBS) [42] was pro-

duced to identify the boundary and scope of the project. This diagram broke down

the work in the project into manageable deliverables, with each deliverable being

further broken down into tasks and sub-tasks. These tasks and sub-tasks were then

converted into stories, which were assigned to members of the team. By doing this,

the project was made much more manageable. Figure 7.3 displays the full overview of

the project’s WBS. As can be observed from the diagram, deliverables 1, 2 and 3 are

related to the application itself, while deliverable 4 includes non-software products

(such as the project’s report). The three application-related deliverables acted as

milestones that marked significant points in the project, and they are as follows:

138

1. Designs of the Visualisation Pages - Involved researching how each voting

rules worked, designing visualisations for each page, identifying generated by

Pabutools to be saved and creating stories for deliverables 2 and 3.

2. Framework for Saving Data in Pabutools - Where new data retrieval

classes (such as BudgetAllocation and AllocationDetails) were designed,

documented and implemented.

3. Implementation of the visualisation page generators - Here, the visu-

aliser classes were defined, the stories from deliverable 1 were implemented and

different types of tests (including integration and user testing) were constantly

conducted.

Figure 7.3: Diagram of the Project’s Work Breakdown Structure Where Each

Colour Corresponds to a Different Deliverable

139

7.2.3 Scheduling

Alongside the WBS, a Gantt chart - one integrated with Notion - was initially pro-

duced to schedule the project over the three university terms. Using a Gantt chart

provided the team with a visual representation of the deliverables from the WBS in

a useful timeline, making tracking the project’s progress much easier. Furthermore,

the timeline features dependencies between tasks of deliverables, allowing for better

planning in terms of what tasks should be included in a sprint cycle. The full Gantt

chart can be viewed in Appendix B.4.

As mentioned above, the Gantt chart enabled us to decide what tasks should be in-

cluded in a sprint cycle. Once the tasks were decided, they were added to the Kanban

board on Notion. In addition to this, each of these tasks was characterised with labels

to indicate their priorities. The labels, along with a short description of what they

cover, can be observed below in Table 7.1.

Label Description of the Issue

High priority An issue of high importance that must be dealt with imme-

diately, otherwise it will halt the project’s progress and may

render the project faulty.

Medium priority An issue of some importance but may not be as urgent as

high-priority tasks. These issues should still be dealt with

promptly, although there may be more flexibility in regard

to deadlines or the consequences of delay.

Low priority An issue that will not affect the project’s progress and may

not be required for the end product.

Table 7.1: Priority Labels and Their Corresponding Definitions

140

7.3 Organisation

This section explores how the project was organised, describing the various roles team

members had as well as how the meetings were conducted before discussing the virtual

control application used within the project.

7.3.1 Roles & Communication

Formally, the project consists of a team with five members who were given responsi-

bility for different roles at the start of the project. The roles consist of:

Role Name Description

Project Manager Taha Responsible for keeping track of the

project and ensuring that the project

goals are achieved.

Admin Contact Taha Liaises with the Module Organiser and

Project Supervisor, and informs them

of any issues that may arise within the

project.

Customer Contact Leon Liaises with the Customer to inform

them of any updates, ask any ques-

tions, and schedule meetings with

them.

Scrum Master Kartheyan Leads the weekly stand-up meetings

and is responsible for managing the

exchange of information between team

members.

141

Documentation Manager James Responsible for managing and main-

taining the documentation used

throughout the project (deliverables,

meeting notes, software documenta-

tion)

Meetings Coordinator Ahmed Responsible for finding and schedul-

ing meetings between the team, the

project supervisor and/or the cus-

tomer. This is done by coordinating

with the Customer and Admin con-

tacts to organise meetings that were

suitable for all parties involved.

Developers All In charge of writing the code and de-

veloping the application.

Table 7.2: Team Roles

For internal communication, Discord [59] was chosen as the group’s main platform, as

the majority of the group already possessed previous experience with the many tools

and features on here. These features include text channels (for organising discussions

into sections such as research, development and report writing), team voice/video

calls (to conduct online internal meetings), and screen-sharing (to support any pair

programming done online) - features that helped us coordinate and communicate with

each other throughout the project.

7.3.2 Meetings

Various meetings were conducted during the project in order to facilitate communi-

cation and collaboration between project stakeholders. Three types of meetings were

held - each with a different purpose:

• Weekly Stand-Up Meetings - To discuss the current tasks being imple-

142

mented and resolve any issues encountered. These meetings are led by the

Scrum master.

• Bi-weekly Meetings with Supervisor - To keep track of the project’s progress

and general direction.

• Monthly Meetings with Customer - Early on in the project’s timeline,

this was to bounce ideas off of the customer and discuss a realistic setup for

the project. Later into the project, these meetings also involved presenting

the latest version of the product to the stakeholders, in order for them to give

constructive feedback.

Whilst some external meetings took place in person, most meetings were conducted

online via Microsoft Teams [60]. This was because the customer lived abroad and

hence, regrettably, was unable to meet in person.

Before meetings, the meeting agenda would be discussed as a team and then recorded

into the meeting notes for reference. These topics - which included presenting the

latest changes made to the visualisations, discussing updates to the Pabutools repos-

itory and addressing administrative matters - would then be discussed during these

meetings. Alongside the meeting agenda, relevant resources for topics to be discussed

would also be prepared in order to help facilitate discussions of these topics. For

example, for meetings where the current version of the product was reviewed, the

relevant visualisation pages would be generated in advance. During meetings, screen-

sharing would then be used to display these pages to the stakeholders, allowing them

to evaluate the latest changes and provide feedback easily.

During the meetings, rough meeting notes were written up - usually by hand. After

the meeting, these notes were then cleaned up and recorded online into Notion. Hav-

ing two separate copies of the meeting notes located in different locations introduced

a recovery strategy for the records. If the Notion servers were down or the notes

were inaccessible for any reason, having a separate - usually physical - copy of the

143

meeting minutes meant that we would be able to recover these notes and recreate the

cleaned-up versions if needed. For examples of the online meeting minutes, refer to

Appendix B.

7.3.3 Version Control

For the version control system for this project, GitHub [61] was used due to it allowing

us to manage and keep track of our source code history. Furthermore, the repository

for Pabutools was stored on GitHub, therefore, through using the same system we

were able to fork the repository and easily submit pull requests from our repository

into Pabutools. In addition to this, through using GitHub, we were able to maintain

current, as well as older versions of the solution, enabling us to quickly restore code

to a previous working state in cases of unexpected errors or other problems. This

minimised any downtime caused by these problems and gave us a recovery strategy

for recovering the source code of the project in the event that some code is lost.

7.4 Risk Management

This section aims to discuss how the team proactively prepared for different risks in

the project, the risks that were encountered throughout the project and how these

risks were managed to mitigate their negative impacts.

7.4.1 Original Risk Assessment Form

During the project’s inception, a Risk Assessment Form was completed. This contains

ratings for the likelihood and potential impacts of different risks that could occur

during the project, as well as a mitigation plan to handle and deal with issues caused

by these risks. This form can be seen in Table 7.3. The potential impact of a risk

occurring was rated using a 3-point high-medium-low scale, while the likelihood of a

risk occurring was rated using the 5-point Likert scale [62] shown below:

144

• Very Likely

• Likely

• Neutral

• Unlikely

• Very Unlikely

Description of Risk Likelihood Potential Impact Risk Mitigation

Plan

A team member is ill. Likely Medium Assess the new situa-

tion, adjust plans ac-

cordingly and coordi-

nate work to fit the

new situation.

A team member leaves

the project.

Very unlikely High Assess the new situa-

tion, adjust plans ac-

cordingly, coordinate

work to fit the new

situation and contact

module organiser im-

mediately.

Slow email replies

from Supervisor or

Customer.

Unlikely Medium Make sure to email

ahead of time and con-

tact module organiser

if necessary.

145

A team member does

not contribute to

the progress of the

project.

Unlikely Medium PM discusses the sit-

uation with the team

member to find alter-

nate arrangements in

order for them to con-

tribute effectively to

the project. Other-

wise, contact module

organiser.

The voting rule is

more complicated

than expected.

Neutral Medium Lower the priority of

that voting rule and

implement the next

voting rule from the

priority list instead.

Being slowed down by

Customer’s PR ap-

provals.

Unlikely Low Email customer or set

up meeting with them

beforehand to let them

know the upcoming

PR’s are urgent.

Unable to design good

enough visualisations

to explain a voting

rule.

Neutral High Gather feedback from

customer and users

to improve visualisa-

tions.

Under or overestimat-

ing the duration of im-

plementing stories.

Neutral Medium Discuss every story es-

timate with all devel-

opers to come to a

consensus.

Table 7.3: The initial Risk Assessment Form indicating the Likelihood and Potential

impact of Risks

146

7.4.2 Encountered Risks

Throughout the project, some risks were unfortunately encountered. An example of

this was when one of our group members, unfortunately, became unwell very close

to the deadline of our first non-software deliverable - the specification. They were

assigned with another group member to work on various sections of the specification

and were unable to complete their tasks. As a result, through consulting the risk as-

sessment form, the team decided to carry out the mitigation plan for team members

falling ill. First, an emergency meeting was conducted to assess the new situation

and plan accordingly. It was decided as a group to divide the work up again. Subse-

quently, the deadline was still met on time by preparing plans for potential risks at

the start of the project and then quickly applying the relevant risk mitigation plan

when an issue occurred.

Another risk that was encountered occurred mid-way through the project, when

changes were lost due to a merge conflict. However, this was not foreseen from

the original risk assessment form; thus, we did not have a mitigation plan in place to

address the risk. The first step taken was consulting the group to determine if there

was a working branch within the repository - if there weren’t any working branches,

the changes would have to be rolled back to a previous working state. Unfortunately,

there were no working branches with the latest changes, and thus, the changes were

lost and had to be re-implemented while the repository was rolled back. As a result

of this event, the risk assessment form was revised to account for the new risk, which

is described in the following section.

Outside of the two issues mentioned above, no other risks were encountered, and

no interpersonal conflicts had occurred throughout the project. The risk assessment

form did not require any more revisions after the merge conflict, as there were no

additional risks that required planning and no additional risks that came up during

the project.

147

7.4.3 Revised Risk Assessment Form

Due to the merge conflict that occurred, the risk assessment form was adapted to

include this new risk, as well as a mitigation plan for it should it happen again. This

additional risk can be seen below in Table 7.4.

Description of Risk Likelihood Potential Impact Risk Mitigation

Plan

A Github merge con-

flict occurs during de-

velopment.

Neutral Medium Minimise the number

of branches created,

and only create them

when required. On

top of this, minimise

the number of stories

that cause such con-

flicts within the same

sprint.

Table 7.4: The New Entry to the Original Risk Assessment Form, Indicating the

Likelihood and Potential Impact of the Risk Occurring

7.5 Legal, Social, Ethical and Professional Issues

7.5.1 Legal Issues

• Data Privacy and Protection: Compliance with data protection regulations

is crucial when handling the personal data of voters or participants. Ensuring

all personal data is collected, stored, and processed legally is critical. Election

data collected from Pabulib complies with European Union privacy law [63] by

addressing data sets, including personally identifiable voter information. By

asking the contributors to remove all personally identifiable voter information

before submission and reserving the right to remove all personally identifiable

148

voter information [64]. In our user testing form, we ask users a series of questions

and then collect and process this data. Before they fill out the form, we inform

them the information they enter will be used by us and may be included in this

report. Additionally, we ask that they do not enter any personal information

into the form. This is shown in Figure A.1.

• Accessibility Standards: As our project aims to engage the entire com-

munity, ensuring that the visualisations and web presence comply with legal

accessibility standards is crucial. We have ensured that the visualisations are

accessible by providing textual descriptions summarising the data. The web-

pages also feature a standard HTML layout with well-structured headers and

footers, complemented by intuitive navigation.

7.5.2 Social Issues

• Representation and Bias: Ensuring that the visualisations do not misrep-

resent or bias the data in ways that could mislead users or skew public under-

standing. This includes being mindful of how data is presented and avoiding

visual elements that could lead to misinterpretation. To address this, we ensure

transparency in the design and functioning of our algorithms. Additionally, we

provide a link to educational resources that explain how to interpret visualisa-

tions to minimise misinterpretations and ensure that users better understand

what the visualisations represent [7].

7.5.3 Ethical Issues

• Transparency and Accountability: Maintaining transparency about how

data is collected, analysed, and visualised. This includes clear documentation

of methodologies and any assumptions made during analysis. As the Pabutools

library is open source, it is available for everyone to see the methodologies

behind the analysis [13]. Clear documentation is also provided alongside the

library to ensure transparency and trust in the user [65].

149

• Consent and Anonymity: Ensuring that data used in the project is either

anonymised or collected with informed consent, particularly when dealing with

sensitive information about individuals’ voting behaviours or preferences. As

mentioned in the section above, the data used from Pabulib adheres to European

Union privacy law [63].

7.5.4 Professional Issues

• Accuracy and Rigor: It is paramount to maintain high standards of accuracy

and scientific rigour in data analysis and visualisation. We have ensured that

we have met professional standards through thorough planning and research,

rigorous testing, regular reviews, and detailed documentation.

7.5.5 Public Good

• Enhancing Democratic Engagement: This project directly contributes to

the public good by enhancing democratic engagement and transparency. By

visualising PB results, the project makes it easier for community members

to understand budgeting decisions, fostering greater trust and participation in

democratic processes.

150

Chapter 8

Conclusion

In this project, we designed a tool that allows users to generate interactive web-pages

that explain the outcomes of PB elections for different voting rules. This tool was

built on top of the existing work implemented in the Pabutools Python library. The

system was designed in a way to provide suitable explanations that can be under-

stood by the general public. This informs them about the benefits of various voting

rules and aids them in making better-informed decisions about which voting rules are

more suitable for the elections they partake in. Throughout the project, visualisations

for MES and the Greedy rule were produced, which were then organised and shown

across three pages - two for MES and one for Greedy. These visualisations and fea-

tures include simple overview charts, dynamic explanations and more detailed graphs

used for in-depth round-by-round analysis. Thorough user testing demonstrated that

understanding of the two rules improved after interacting with our web-pages and

indicated that our visualisations and the ability to go through the steps of each rule

were very effective. Most importantly, all of our aims were met and the customer was

“happy with the end result, and definitely grateful for the time and investment [we]

dedicated to this project.” As of right now, our solution is available to use within the

Pabutools Python library.

151

8.1 Future Work

During the development of our project, we encountered both anticipated and unex-

pected software limitations. These limitations, though outside our initial focus, have

led to the identification of interesting prospects for future work. The following dis-

cussion will delve into some of the most intriguing and feasible ideas identified for

further investigation.

8.1.1 Advanced Visualisations

Advanced visualisations go beyond the fundamental visual tools we have implemented,

which include integrating geographical representations and complex diagrams. These

enhanced analytical capabilities could help users make more informed, strategic de-

cisions.

8.1.2 Further Clustering Research

As explored in the investigation as to how clustering can be employed to abstract the

data into manageable subsets, the fundamental issue with the time taken to run the

clustering algorithms stopped our effort as it did not align with requirement R14.

Further research into clustering would aim to identify significant groups of an election

adaptively. The DBSCAN algorithm falls as the hyperparameters need to be tuned

for each election instance to have meaningful results. Therefore, further research

could go into algorithms where the hyperparameters do not have to be tuned whilst

finding a dynamic number of clusters.

The HDBSCAN algorithm is an area of interest as it addresses the issue of us-

ing a single density threshold not properly characterising common data sets [66].

This algorithm provides a density-based clustering hierarchy representing all possible

DBSCAN-like solutions for an infinite range of density thresholds and from which a

simplified tree of significant clusters can be extracted [66]; this novel approach would

address the issue of tuning hyperparameters.

152

Additional research could use information regarding each participant, such as age,

voting method, and gender. With this information passed into the clustering algo-

rithms, it could be determined whether or not there is a relationship between de-

mographics. The clustering research aims to obtain clusters that could be used in

the diagrams, minimising the amount of information that has to be cropped out and

maximising the amount of information exposed to the user.

8.1.3 Additional Rules

Sequential Phragmen’s

As seen in Chapter 1, Sequential Phragmen’s is another voting rule where all par-

ticipants start with a zero budget, which continuously increases. When a group

of supporters has enough virtual currency to buy a project they all approve of, the

project is bought. The rule stops when a project can be bought, but only by violating

the budget constraint. The sequential Phragmens rule has already been implemented

in the Pabutools library. Therefore, creating a visualisation page for this rule would

take a similar approach as the method of equal shares visualisation.

Envisioned visualisations for Sequential Phragmen’s rule encompass a summary page

akin to the MES page. This page would present all the chosen and rejected projects,

offering additional insights into the selection process. Similarly, a round-by-round

page, similar to MES, could guide the reader through the election, illustrating each

round for every new project that can be funded. These visualisations would enhance

the reader’s understanding of the rule’s application and outcomes.

For each round, a bar chart could be incorporated, displaying the funds available

to the project’s voters, the total voter’s funds (excluding ’purchased’ projects), and

the project’s cost. This graphic would enable the user to identify projects that were

close to being funded and understand why some projects were prioritised over others.

153

It would serve as a visual aid, enhancing the reader’s understanding of the election

process.

Figure 8.1: Example Graph Visualisation for Round-By-Round Analysis of

Sequential Phragmen’s Rule

Figure 8.1 shows how this graph could look. Each project is associated with three

bars. The top bar shows the total accumulation of virtual money voters of a project

have received; the middle bar represents the project’s cost, and the bottom bar rep-

resents the sum of the available money between voters for the money. The green bars

represent projects already selected for funding, and the blue bars represent projects

still yet to be funded. In Figure 8.1, we see that ’Project D’ and ’Project E’ have

been selected for funding. The next project to be funded will be ’Project C’ as the

available budget between its voters is equal to the project’s cost; therefore, it can be

funded as long as it does not violate the budget of the election.

Welfare Maximisation

Pabutools has a voting rule implementation to maximise utilitarian social welfare.

The outcome is computed via an integer linear program solver [67]. Visualising the

process behind project selection in PB using the utilitarian welfare maximisation ap-

154

proach is challenging due to the inherent complexity of integer linear programming

(ILP) used to determine optimal outcomes, particularly for those without a back-

ground in operations research or mathematics. This page’s visualisations would be

similar to the Greedy page, which summarises the selected projects. This rule can

only be used for additive satisfaction measures, as there is no general solution for

non-additive satisfaction measures. Therefore, this page would only be available for

some elections.

Exhaustion Methods

As seen in Chapter 1, some voting rules do not return exhaustive budget allocations.

There are different methods to render the outcome exhaustive. Different completion

methods select different projects. Therefore, it is helpful to visualise the differences

between the different exhaustion methods to see how the completion techniques vary.

Heatmaps

The Participatory Budgeting in New York City (PBNYC) initiative sees the commu-

nity directly decide how to spend $1,000,000 in participating council districts [68].

One website allows participants to submit ideas about how things could work better

in their community by sharing them on a map [69]. The ideas are shared with vol-

unteers who work with the council to turn ideas into proposals, with input from city

agencies. The resulting map can be seen in Figure 8.2, with different proposals tagged

under different categories across New York. If all elections use a similar approach,

then the geographical information regarding projects will be available. From this, it

would be possible to visualise projects that were chosen for funding using a heatmap.

One method to geographically visualise the projects is by a heatmap.

155

Figure 8.2: Project Proposal Ideas for Participatory Budgeting in New York City

A heatmap is a geographical representation that uses varying colours to indicate the

density or intensity of elected projects across different areas. Each point on the map

reflects the location and budget of a project, with more intense colours signifying

higher budget allocations. Thus, the heatmap provides a visual summary of where

resources are concentrated within the city. An example visualisation can be seen

in Figure 8.3, with the dark red areas representing areas where projects have been

elected and the lighter colours representing areas where fewer projects were elected.

Using heatmaps to visualise the distribution of funded projects, particularly under the

MES voting rule, provides clear insights into spatial equity and resource allocation.

This idea will be explored further in the following comparison section.

156

Figure 8.3: Mock Example Heatmap of Elected Projects in Warsaw

8.1.4 Rules Comparison

Currently, our solution provides in-depth analysis into one rule at a time. For users to

compare different rules, they would have to manually alternate between different pages

to analyse the differences. Further development could see a cohesive page directly

comparing multiple voting rules. Some potential ideas for this page’s visualisations

and diagrams could include the following:

Density Plot of Participant Satisfaction Across Voting Rules

The density plot in Figure 8.4 visually compares participant satisfaction between two

voting rules: the Greedy rule and MES. The diagram shows the spread and concen-

tration of satisfaction levels, which helps stakeholders quickly assess which voting rule

generally yields higher participant satisfaction and how varied the responses are under

each rule. Moreover, the graph highlights the diversity in satisfaction for the Greedy

rule, with a broader spread of satisfaction scores compared to the more concentrated,

generally favourable scores for MES. This helps users understand the consistency and

predictability of participant reactions to each voting method.

157

Figure 8.4: Comparative Density Plot of Participant Satisfaction for the Greedy

Rule and Method of Equal Shares

Visualising of Project using Geographic Comparison

Figure 8.5 shows visualisations of projects in PB elections using GPS data. Each

project is represented by two glued-together half-discs. The size of the left half is

proportional to the project’s cost, whereas the size of the right half is proportional

to the total number of votes the project received. The figures compare the outcomes

of the cost-utility variant of MES with the outcomes of the Greedy rule. Specifically,

grey projects were not selected by either of the rules, green projects were selected by

both, blue projects were selected only by MES, and red projects were selected only

by the Greedy rule [70].

158

Figure 8.5: Visualisation of Projects in PB Elections Using GPS Data

Further development could see a comparison similar to the ones seen in Figure 8.5

between the Greedy rule and MES. This will give the user further insight into the

difference in projects elected between each rule. From Figure 8.5, we observe that the

MES algorithm selects more diverse and more representative sets of projects in terms

of their geographic locations and supporters. This could aid the user’s understanding

of why the MES is often chosen over Greedy.

We already have the required information to implement this feature; however, the

geographical locations of each project are required, which are not always present in

election data.

Visualisation of Projects using the Jaccard distance

Another approach offers significant benefits. By creating a map that illustrates vot-

ers’ preferences rather than the geographic locations of the projects [70]. For a given

approval PB election, we first compute the Jaccard distances between all pairs of

projects. Next, we use these distances to create a two-dimensional embedding.

159

An example for 16 elections can be seen in Figure 8.6 with the same colour key men-

tioned in the previous section. Once again, it is evident that MES picks a broader and

more representative collection of projects in terms of their supporters. This provides

another visualisation that strongly emphasises the fairness behind the MES voting

rule.

Figure 8.6: Visualisation of Projects in PB Elections Using Jaccard Distance

160

Bibliography

[1] Anwar Shah. Participatory Budgeting. Public Sector Governance and Account-

ability. http://hdl.handle.net/10986/6640, License: CC BY 3.0 IGO.

Washington, DC: World Bank, 2007.

[2] Gareth Young. Participatory Budgeting (Tower Hamlets, London, UK). Ac-

cessed: 20/04/2024. 2010. url: https://participedia.net/case/26.

[3] Tower Hamlets, ‘You Decide!’ Accessed: 21/04/2024. 2016. url: https://www.

local.gov.uk/case-studies/tower-hamlets-you-decide.

[4] Govanhill, Glasgow. Accessed: 21/04/2024. 2016. url: https://www.local.

gov.uk/case-studies/govanhill-glasgow.

[5] Participatory budgeting in Brazil. https://archive.epa.gov/international/

jius/web/pdf/14657_partic-budg-brazil-web.pdf. [Accessed 25-10-2023].

[6] Benny Lehmann, Daniel Lehmann, and Noam Nisan. “Combinatorial auctions

with decreasing marginal utilities”. In: Games and Economic Behavior 55.2

(2006). Mini Special Issue: Electronic Market Design, pp. 270–296. issn: 0899-

8256. doi: https://doi.org/10.1016/j.geb.2005.02.006. url: https:

//www.sciencedirect.com/science/article/pii/S089982560500028X.

[7] Dominik Peters and Piotr Skowron. Method of Equal Shares for Participatory

Budgeting. 2024. url: https://equalshares.net.

[8] Stanis law Szufa Dariusz Stolicki and Nimrod Talmon. Pabulib. 2022. url: http:

//pabulib.org/.

161

http://hdl.handle.net/10986/6640
https://participedia.net/case/26
https://www.local.gov.uk/case-studies/tower-hamlets-you-decide
https://www.local.gov.uk/case-studies/tower-hamlets-you-decide
https://www.local.gov.uk/case-studies/govanhill-glasgow
https://www.local.gov.uk/case-studies/govanhill-glasgow
https://archive.epa.gov/international/jius/web/pdf/14657_partic-budg-brazil-web.pdf
https://archive.epa.gov/international/jius/web/pdf/14657_partic-budg-brazil-web.pdf
https://doi.org/https://doi.org/10.1016/j.geb.2005.02.006
https://www.sciencedirect.com/science/article/pii/S089982560500028X
https://www.sciencedirect.com/science/article/pii/S089982560500028X
https://equalshares.net
http://pabulib.org/
http://pabulib.org/

[9] Piotr Skowron Dominik Peters. Tie breaking — Method of Equal Shares. url:

https://equalshares.net/implementation/tie-breaking.

[10] Dominik Peters. Tie Simulation. Accessed: [20/04/2024]. 2023. url: https:

//gist.github.com/DominikPeters/2208ca4c7c1464bc1d3956829195f20a.

[11] Dominik Peters and Piotr Skowron. Comparison with other voting systems for

participatory budgeting. 2024. url: https://equalshares.net/benefits/

comparisons.

[12] Dominik Peters, Grzegorz Pierczyński, and Piotr Skowron. Proportional Par-

ticipatory Budgeting with Additive Utilities. 2022. arXiv: 2008.13276 [cs.GT].

[13] Simon Rey. pabutools - PyPI. 2022. url: https : / / pypi . org / project /

pabutools/.

[14] Dariusz Stolicki, Stanis law Szufa, and Nimrod Talmon. Pabulib: A Participatory

Budgeting Library. 2020. arXiv: 2012.06539 [cs.DC].

[15] Simon Rey. Simon Rey — PhD candidate in Computational Social Choice at

ILLC. 2023. url: https://simonrey.fr/en.

[16] Yves Cabannes. “Participatory budgeting: a significant contribution to partic-

ipatory democracy”. In: Environment and Urbanization 16.1 (2004), pp. 27–

46. doi: 10.1177/095624780401600104. url: https://doi.org/10.1177/

095624780401600104.

[17] Nelson Dias. “Hope for democracy. 30 years of participatory budgeting world-

wide”. In: Epopeia Records (2018).

[18] Sahsil Enŕıquez Nelson Dias and Simone Júlio (Eds). “The World Atlas of

Participatory Budgeting”. In: Oct. 2019.

[19] Animesh Singh Rathore et al. “Participatory Budgeting in Brazil”. In: 2003.

url: https://api.semanticscholar.org/CorpusID:154256664.

[20] Stephanie McNulty Brian Wampler Michael Touchton. “Participatory budget-

ing and well-being: governance and sustainability in comparative perspective”.

In: Journal of Public Budgeting, Accounting & Financial Management 36 (2024).

162

https://equalshares.net/implementation/tie-breaking
https://gist.github.com/DominikPeters/2208ca4c7c1464bc1d3956829195f20a
https://gist.github.com/DominikPeters/2208ca4c7c1464bc1d3956829195f20a
https://equalshares.net/benefits/comparisons
https://equalshares.net/benefits/comparisons
https://arxiv.org/abs/2008.13276
https://pypi.org/project/pabutools/
https://pypi.org/project/pabutools/
https://arxiv.org/abs/2012.06539
https://simonrey.fr/en
https://doi.org/10.1177/095624780401600104
https://doi.org/10.1177/095624780401600104
https://doi.org/10.1177/095624780401600104
https://api.semanticscholar.org/CorpusID:154256664

[21] Robert Zepic, Marcus Dapp, and Helmut Krcmar. “Participatory Budgeting

without Participants: Identifying Barriers on Accessibility and Usage of Ger-

man Participatory Budgeting”. In: 2017 Conference for E-Democracy and Open

Government (CeDEM). 2017, pp. 26–35. doi: 10.1109/CeDEM.2017.24.

[22] R. W. Hildreth LaShonda M. Stewart Steven A. Miller and Maja V. Wright-

Phillips. “Participatory Budgeting in the United States: A Preliminary Analysis

of Chicago’s 49th Ward Experiment”. In: New Political Science 36.2 (2014),

pp. 193–218. doi: 10.1080/07393148.2014.894695.

[23] Nimrod Talmon and Piotr Faliszewski. “A Framework for Approval-Based Bud-

geting Methods”. In: Proceedings of the AAAI Conference on Artificial Intelli-

gence 33.01 (July 2019), pp. 2181–2188. doi: 10.1609/aaai.v33i01.33012181.

url: https://ojs.aaai.org/index.php/AAAI/article/view/4052.

[24] Thorvald N Thiele. “Om Flerfoldsvalg”. In: Oversigt over Det Kongelige Danske

Videnskabernes Selskabs Forhandlinger (1895), pp. 415–441.

[25] Edith Elkind et al. “Properties of multiwinner voting rules”. In: Social Choice

and Welfare (2017).

[26] Maaike Los, Zoé Christoff, and Davide Grossi. Proportional Budget Allocations:

Towards a Systematization. 2022. arXiv: 2203.12324 [cs.GT].

[27] Svante Janson. Phragmén’s and Thiele’s election methods. 2018. arXiv: 1611.

08826 [math.HO].

[28] Markus Brill et al. Phragmén’s Voting Methods and Justified Representation.

2023. arXiv: 2102.12305 [cs.GT].

[29] Luis Sánchez-Fernández et al. Proportional Justified Representation. 2016. arXiv:

1611.09928 [cs.GT].

[30] Jesús A. Fiseus Luis Sánchez-Fernándexz Norberto Fernández-Garcia and Markus

Brill. “The maximin support method: an extension of the D’Hondt method to

approval-based multiwinner elections”. In: Mathematical Programming (2024).

163

https://doi.org/10.1109/CeDEM.2017.24
https://doi.org/10.1080/07393148.2014.894695
https://doi.org/10.1609/aaai.v33i01.33012181
https://ojs.aaai.org/index.php/AAAI/article/view/4052
https://arxiv.org/abs/2203.12324
https://arxiv.org/abs/1611.08826
https://arxiv.org/abs/1611.08826
https://arxiv.org/abs/2102.12305
https://arxiv.org/abs/1611.09928

[31] Haris Aziz, Barton Lee, and Nimrod Talmon. Proportionally Representative

Participatory Budgeting: Axioms and Algorithms. 2017. arXiv: 1711 . 08226

[cs.GT].

[32] Dominik Peters and Piotr Skowron. Proportionality and the Limits of Wel-

farism. 2022. arXiv: 1911.11747 [cs.GT].

[33] Simon Rey and Jan Maly. The (Computational) Social Choice Take on Indivis-

ible Participatory Budgeting. 2023. arXiv: 2303.00621 [cs.GT].

[34] Elena Long. “Visualisations of Election Data ”. PhD thesis. University of Ply-

mouth, 2013.

[35] Paul Martin Lester. “Syntactic Theory of Visual Communication”. In: (2011).

[36] Stephen Few. Show Me the Numbers: Designing Tables and Graphs to Enlighten.

2nd. Oakland, CA, USA: Analytics Press, 2012. isbn: 0970601972.

[37] B. Shneiderman. “The eyes have it: a task by data type taxonomy for infor-

mation visualizations”. In: Proceedings 1996 IEEE Symposium on Visual Lan-

guages. 1996, pp. 336–343.

[38] Piotr Faliszewski et al. Participatory Budgeting: Data, Tools, and Analysis.

2023.

[39] Stanis law Szufa Dariusz Stolicki and Nimrod Talmon. PABUSTATS. 2022. url:

http://pabulib.org/wsgi/analysis/menu.

[40] Dominik Peters. Pref.Tools: ABC Voting. 2023. url: https://pref.tools/

abcvoting/.

[41] Markus Utke. Welcome to pabuviz. 2024. url: https://pabuviz.org/.

[42] A guide to the Project Management Body of Knowledge: (PMBOK Guide).

Project Management Institute, 2017.

[43] AltexSoft. Functional and nonfunctional requirements specification. Accessed:

[20/04/2024]. Nov. 2023. url: https://www.altexsoft.com/blog/functional-

and-non-functional-requirements-specification-and-types/.

164

https://arxiv.org/abs/1711.08226
https://arxiv.org/abs/1711.08226
https://arxiv.org/abs/1911.11747
https://arxiv.org/abs/2303.00621
http://pabulib.org/wsgi/analysis/menu
https://pref.tools/abcvoting/
https://pref.tools/abcvoting/
https://pabuviz.org/
https://www.altexsoft.com/blog/functional-and-non-functional-requirements-specification-and-types/
https://www.altexsoft.com/blog/functional-and-non-functional-requirements-specification-and-types/

[44] Elena Long. Election Data Visualisation. 2013.

[45] P. Riehmann, M. Hanfler, and B. Froehlich. “Interactive Sankey diagrams”. In:

IEEE Symposium on Information Visualization, 2005. INFOVIS 2005. 2005,

pp. 233–240. doi: 10.1109/INFVIS.2005.1532152.

[46] Nava Tintarev, Shahin Rostami, and Barry Smyth. “Knowing the unknown: vi-

sualising consumption blind-spots in recommender systems”. In: Proceedings of

the 33rd Annual ACM Symposium on Applied Computing. SAC ’18. Pau, France:

Association for Computing Machinery, 2018, pp. 1396–1399. isbn: 9781450351911.

doi: 10.1145/3167132.3167419. url: https://doi.org/10.1145/3167132.

3167419.

[47] ZingChart: A Comprehensive Charting Library for Data Visualization. https:

//www.zingchart.com/. Accessed: 2024-04-12.

[48] Jacob Thornton Mark Otto and Bootstrap contributors. Bootstrap — getboot-

strap.com. https://getbootstrap.com/. [Accessed 25-10-2023].

[49] Mingyue Fan et al. “Effects of Information Overload, Communication Overload,

and Inequality on Digital Distrust: A Cyber-Violence Behavior Mechanism”. In:

Frontiers in Psychology 12 (2021). doi: 10.3389/fpsyg.2021.643981. url:

https://doi.org/10.3389/fpsyg.2021.643981.

[50] Avcontentteam. PCA: What is Principal Component Analysis & How It Works?

(updated 2024). Apr. 2024. url: https://www.analyticsvidhya.com/blog/

2016/03/pca-practical-guide-principal-component-analysis-python/.

[51] Laurens van der Maaten and Geoffrey Hinton. “Visualizing Data using t-SNE”.

In: Journal of Machine Learning Research 9.86 (2008), pp. 2579–2605.

[52] Martin Ester et al. “A density-based algorithm for discovering clusters in large

spatial databases with noise”. In: Proceedings of the 2nd International Confer-

ence on Knowledge Discovery and Data Mining. 1996, pp. 226–231.

165

https://doi.org/10.1109/INFVIS.2005.1532152
https://doi.org/10.1145/3167132.3167419
https://doi.org/10.1145/3167132.3167419
https://doi.org/10.1145/3167132.3167419
https://www.zingchart.com/
https://www.zingchart.com/
https://getbootstrap.com/
https://doi.org/10.3389/fpsyg.2021.643981
https://doi.org/10.3389/fpsyg.2021.643981
https://www.analyticsvidhya.com/blog/2016/03/pca-practical-guide-principal-component-analysis-python/
https://www.analyticsvidhya.com/blog/2016/03/pca-practical-guide-principal-component-analysis-python/

[53] Wikipedia. Combinatorial participatory budgeting. Accessed: [02/04/2024]. Apr.

2024. url: https://en.wikipedia.org/wiki/Combinatorial_participatory_

budgeting.

[54] Kent Beck et al. Manifesto for Agile Software Development. 2001. url: http:

//www.agilemanifesto.org/.

[55] Kanban University. “2022 State of Kanban Report”. In: (2022). url: https:

//kanban.university/wp-content/uploads/2022/10/State-of-Kanban-

Report-2022.pdf. (visited on 10/23/2023).

[56] Inc. Notion Labs. Notion. 2023. url: https://www.notion.so/.

[57] Valpadasu Hema et al. “Scrum: An Effective Software Development Agile Tool”.

In: IOP Conference Series: Materials Science and Engineering 981.2 (Dec.

2020), p. 022060. doi: 10.1088/1757- 899X/981/2/022060. url: https:

//dx.doi.org/10.1088/1757-899X/981/2/022060.

[58] Investopedia. Feasibility study. Accessed: [22/04/2024]. 2024. url: https://

www.investopedia.com/terms/f/feasibility-study.asp.

[59] Discord. IMAGINE A PLACE... 2023. url: https://discord.com.

[60] Microsoft 2023. Online Meetings. 2023. url: https://www.microsoft.com/

en-gb/microsoft-teams/online-meetings.

[61] GitHub Inc. GitHub. 2023. url: https://github.com.

[62] R. Likert. A Technique for the Measurement of Attitudes. A Technique for the

Measurement of Attitudes nos. 136-165. Archives of Psychology, 1932. url:

https://books.google.co.uk/books?id=9rotAAAAYAAJ.

[63] Regulation (EU) 2016/679 of the European Parliament and of the Council of 27

April 2016 on the Protection of Natural Persons with regard to the Processing of

Personal Data and on the Free Movement of Such Data, and Repealing Directive

95/46/EC (General Data Protection Regulation). Official Journal of the Euro-

pean Union. 2016. url: https://eur-lex.europa.eu/eli/reg/2016/679/oj.

166

https://en.wikipedia.org/wiki/Combinatorial_participatory_budgeting
https://en.wikipedia.org/wiki/Combinatorial_participatory_budgeting
http://www.agilemanifesto.org/
http://www.agilemanifesto.org/
https://kanban.university/wp-content/uploads/2022/10/State-of-Kanban-Report-2022.pdf.
https://kanban.university/wp-content/uploads/2022/10/State-of-Kanban-Report-2022.pdf.
https://kanban.university/wp-content/uploads/2022/10/State-of-Kanban-Report-2022.pdf.
https://www.notion.so/
https://doi.org/10.1088/1757-899X/981/2/022060
https://dx.doi.org/10.1088/1757-899X/981/2/022060
https://dx.doi.org/10.1088/1757-899X/981/2/022060
https://www.investopedia.com/terms/f/feasibility-study.asp
https://www.investopedia.com/terms/f/feasibility-study.asp
https://discord.com
https://www.microsoft.com/en-gb/microsoft-teams/online-meetings
https://www.microsoft.com/en-gb/microsoft-teams/online-meetings
https://github.com
https://books.google.co.uk/books?id=9rotAAAAYAAJ
https://eur-lex.europa.eu/eli/reg/2016/679/oj

[64] Stanis law Szufa Dariusz Stolicki and Nimrod Talmon. About. url: https://

pabulib.org/about.

[65] Simon Rey et al. Pabutools: PB as easy as ABC. url: https://pbvoting.

github.io/pabutools/.

[66] Ricardo J. G. B. Campello, Davoud Moulavi, and Joerg Sander. “Density-Based

Clustering Based on Hierarchical Density Estimates”. In: Advances in Knowl-

edge Discovery and Data Mining. Ed. by Jian Pei et al. Berlin, Heidelberg:

Springer Berlin Heidelberg, 2013, pp. 160–172. isbn: 978-3-642-37456-2.

[67] Simon Rey et al. Rules — Pabutools. url: https://pbvoting.github.io/

pabutools/usage/rules.html.

[68] Participatory Budgeting. url: https://council.nyc.gov/pb/.

[69] Participatory Budgeting NYC. url: https://shareabouts- pbnyc- 2018.

herokuapp.com/page/about.

[70] Piotr Faliszewski et al. “Participatory budgeting: Data, tools and analysis”. In:

Proceedings of the Thirty-Second International Joint Conference on Artificial

Intelligence (Aug. 2023). doi: 10.24963/ijcai.2023/297.

167

https://pabulib.org/about
https://pabulib.org/about
https://pbvoting.github.io/pabutools/
https://pbvoting.github.io/pabutools/
https://pbvoting.github.io/pabutools/usage/rules.html
https://pbvoting.github.io/pabutools/usage/rules.html
https://council.nyc.gov/pb/
https://shareabouts-pbnyc-2018.herokuapp.com/page/about
https://shareabouts-pbnyc-2018.herokuapp.com/page/about
https://doi.org/10.24963/ijcai.2023/297

Appendix A

Survey

Figure A.1: User Testing Form Introduction

Question

1 Have you ever heard of Participatory Budgeting?

2 Have you ever heard of Greedy Utilitarian Welfare (Greedy)?

3 Have you ever heard of the Method of Equal Shares (MES)?

4 Explain in your own words the PB rule - Greedy.

168

5 Explain in your own words the MES rule.

6 Give a number between 1 and 10 indicating your understanding of the Greedy

rule.

7 Give a number between 1 and 10 indicating your understanding of the MES

rule.

8 After you have explored both pages, to what extent do you understand the

difference between MES and Greedy (1-10)?

9 To what extent do you understand the concept of an ‘Equal Share’ in MES

(1-10)?

10 To what extent do you understand the concept of ‘Effective Vote Count’ in

MES (1-10)?

11 To what extent do you understand the concept of an ‘Effective Vote Count

Reduction’ in MES (1-10)?

12 Will the outcome of MES always be the same as Greedy?

13 Explain in your own words the MES Rule.

14 Explain in your own words the Greedy Rule.

15 Explain in your own words the benefits of MES over Greedy.

16 How well do you now feel you understand the Greedy rule (1-10)?

17 Would you trust a set of projects decided in your local area with Greedy?

18 How well do you now feel you understand the MES rule?

19 To what extent does the summary statistics at the beginning of the visualisa-

tion page give a sufficient understanding of the rule (1-10)?

20 To what extent does the summary page give a sufficient understanding of the

rule (1-10)?

21 To what extent, using the round-by-round analysis and the summary page,

do you completely understand the election and the rule (1-10)?

22 To what extent did the vote flow chord diagram and Sankey diagram show

effectively the interaction between projects (1-10)?

169

23 To what extent do the effective vote count and effective vote count reduction

bar charts show clearly why some projects may have been skipped despite

higher vote counts (1-10)?

24 To what extent do the scrollable pie charts show clearly how each project

being selected changes the funding available to the next projects (1-10)?

25 Were you provided the results of the election (the selected projects) and the

provided visualisations, to what extent would you trust the outcome of the

election were it provided to you by your local authority (1-10)?

26 The visualisations provided to you improved your understanding of the MES

rule (Y/N)?

27 To what extent would you support the incorporation of PB at your local

authority?

28 You would prefer MES to be implemented over Greedy at your local authority?

Table A.1: User Testing Questions

170

Appendix B

Management

Team Weekly @October 17, 2023 1

Team Weekly
Attendees Taha Mohyuddin Kartheyan Sivalingam J James Harvey Ahmed Minhas

Event time

Type Team weekly

📣 Agenda items
Presentation times

Customer

Specification discussion?

Notes

Leon unable to attend due to being at a assessment centre

Presentation

Have to do it in Week 9 or 10, unable to do Week 11, therefore, Markus will be joining online.

Choosing times for presentation, chosen Tuesday 5th December anytime after 3pm for now, may be change
but ideally afternoon Monday/Tuesday.

Customer

Simon, potential customer, just finished PhD in Computer Science and very interested in PB.

Involved in many projects with PB, so able to give us ideas and help us be distinguishable from other groups
by not treading on their toes.

We will contact Simon, hopefully to schedule a meeting within a week so we can include him in our
Specification report.

Ask Simon questions in the introductory email (along with explaining our project and what a customer role
entails)

Scope of this project

How involved will they want to be in the codebase (do they want access or just review code?)

Potential papers and other research they may know that can aid us.

Whether their prototype tool is available for us to see, if it’s open-source or not.

If we’re unable to get Simon, another potential customer and direction we can go in is a person involved with
PB voting methods running on the blockchain (Cardano - Project Catalyst https://projectcatalyst.io), anyone
can vote and votes are rated based on how much stake they hold). Regardless, good to mention in
specification if we don’t end up using this person as a customer.

To-do

@October 17, 2023

@October 17, 2023 3:00 PM

Be familiar with this paper https://arxiv.org/pdf/2305.11035.pdf and the tools mentioned such as PabuLib,
PabuTools and PabuStats.

Play around with PabuTools and be familiar with most of their features.

Figure B.1: Example of How the Meeting Notes Were Laid Out For a General

Meeting with the Supervisor Exported From Notion

171

Team Weekly /w Customer @February 29, 2024 1

Team Weekly /w Customer
Attendees Taha Mohyuddin Kartheyan Sivalingam Leon Chipchase J James Harvey Ahmed Minhas

Event time

Type Customer

📚 Pre-read
PR other group made

https://github.com/pbvoting/pabutools/pull/11

📣 Agenda items
Discuss new BudgetAllocation class that another group has implemented.

Discuss progress made.

James and Leon - Round analysis page

Added annotations to the graphs and included dynamic explanations for them.

New dynamic visualisations.

Graphs are now fixed in that the values on the graph now correspond to the correct values.

The larger charts such as the chord diagram now show the 5 most common projects, so the chart can be a bit cleaner for a large election.

Moved on to progress Kartheyan made whilst they load up the new page

Kartheyan - BudgetAllocation class

Working on following Simon’s email as well as the other group’s recent PR

Changed MESIteration to MESProductDetails.

Call the iteration for each project being selected.

Add all projects to be considered and budget at the start of the round call.

When we go to the next project, get the selected project and append this iteration to all other iterations.

Simon’s not entirely happy with the implementation as there can be some elections with projects that never get considered until a very long time down the iteration, therefore,
if we store all projects at the start, we are storing a large amount of unnecessary data, hence, why the other group (https://github.com/pbvoting/pabutools/pull/11) only adds
projects that actually got selected or discarded.

Computing affordability is very expensive, so we want to minimise it as much as possible.

However, within our visualisations, we require all projects to be stored so we can retrieve the effective vote counts. Simon’s fine with this.

We can still try and use the same logic as the previous groups by involving a flag if a project was discarded.

Asked Simon if we should have unit tests that test each value of the iteration or simply check if the length of the iteration equals the number of selected projects.

Simon said the latter would be preferable.

Back to James and Leon

Now sharing screen

If we hover our graphs, we can see tool tips and more information regarding the graph.

Sankey chart now has an other selection to see the other projects not part of the 5 most common projects.

Taha and Ahmed - Page summary

Connected page summary to the round analysis page.

So within the summary table, we can expand a row which includes a hyperlink to the round page and will eventually include other useful metrics that wouldn’t fit in the
table (such as average, max, min, etc).

The hyperlink opens the round analysis page on the specific round that was picked by the user on the summary page.

Next tasks

We are able to push our visualisations whenever to pabutools, the most important PR is the MESIteration stuff.

Kartheyan will modify MESIteration and submit a PR to Simon within the week.

Leon will plan on getting the Greedy rule working.

James will continue working on the round analysis page.

Taha and Ahmed will try and add dynamic explanations and more useful stats and information on the page summary.

Tentatively plan for a meeting from two weeks on - depending on if the PR gets accepted or not, if there are any issues with the PR, we will have a meeting next Thursday
with Simon and Markus.

No issues, then internal meeting next Thursday.

Fixing graphs on round analysis page

@February 29, 2024

@February 29, 2024 2:00 PM

Figure B.2: Example of How the Meeting Notes Were Laid Out for a Meeting with

the Customer Exported From Notion

172

Figure B.3: Initial Meeting Notes for Requirements Elicitation

173

Figure B.4: Gantt Chart of Our Three-Semester Timeline for the Project

174

Appendix C

Documentation & User Manual

Figure C.1: Visualisation Module Documentation Page One

175

Figure C.2: Visualisation Module Documentation Page Two

176

CS407 - Group Project - User Manual and Submission Demo

Visualising and Analysing Participatory Budgeting Elections
This notebook gives a demo for running the visualisation code we have created. We show you how to create the visualisations for any file (located in the tests
directory), as well as specific examples:

A small election (small.pb) - An artificial election used for testing (from PaBuLib).
A medium election (medium.pb) - An election in France Tolouse 2019.
A large election (large.pb) - An election from Centrum Begroot - a great example of high numbers of voters and projects.

We have located the example visualisations in demo-visualisations/{mes/greedy}/{small/medium/large}/ for your ease of viewing results quickly.

The documentation page to the visualisations specifically is located here. Additionally, Jinja may need to be installed if testing outside of this notebook (the
installation is included below):

NOTE: This package requires Python >= 3.9.

Additional Installation

%pip install jinja2

Method of Equal Shares (MES)

First, the markdown cell below shows the general format for visualisations, this is just an outline if you had a specific file to test.

from pabutools.visualisation.visualisation import MESVisualiser
from pabutools.rules.mes import method_of_equal_shares
from pabutools import election
from pabutools.election import Cost_Sat

General format
instance, profile = election.parse_pabulib("./{path_to_election_file}.pb")
outcome = method_of_equal_shares(instance, profile, sat_class=Cost_Sat, analytics=True)

The visualiser takes the profile, instance, and outcome as arguments
visualiser = MESVisualiser(profile, instance, outcome)

name is optional and defaults to the empty string
visualiser.render("./{path_to_output_file}/", name="{name}")

Code Example

For the following four cells, we show the required imports, then the running of the code for the three election files provided.

Setup
from pabutools.visualisation.visualisation import MESVisualiser
from pabutools.rules.mes import method_of_equal_shares
from pabutools import election
from pabutools.election import Cost_Sat # You can use any satisfaction function you like for this rule
 # Changing this function will not change our visualisations,
 # But may change the results of the election

Parse the election and get the outcome
instance, profile = election.parse_pabulib("./demo-pb-files/small.pb")
outcome = method_of_equal_shares(instance, profile, sat_class=Cost_Sat, analytics=True)

The visualiser takes the profile, instance, and outcome as arguments
visualiser = MESVisualiser(profile, instance, outcome)

name is optional and defaults to the empty string
visualiser.render("demo-visualisations/small/mes", name="small")

Parse the election and get the outcome
instance, profile = election.parse_pabulib("./demo-pb-files/medium.pb")
outcome = method_of_equal_shares(instance, profile, sat_class=Cost_Sat, analytics=True)

The visualiser takes the profile, instance, and outcome as arguments
visualiser = MESVisualiser(profile, instance, outcome)

name is optional and defaults to the empty string
visualiser.render("demo-visualisations/medium/mes", name="medium")

Parse the election and get the outcome
instance, profile = election.parse_pabulib("./demo-pb-files/large.pb")
outcome = method_of_equal_shares(instance, profile, sat_class=Cost_Sat, analytics=True)

The visualiser takes the profile, instance, and outcome as arguments
visualiser = MESVisualiser(profile, instance, outcome)

name is optional and defaults to the empty string
visualiser.render("demo-visualisations/large/mes", name="large")

In []:

In []:

In []:

In []:

In []:

Figure C.3: User Manual to Install and Generate Visualisations Page One

177

Greedy Utilitarian Welfare

As previously, we show the general format for the visualisations.

from pabutools.visualisation.visualisation import GreedyWelfareVisualiser
from pabutools.rules.greedywelfare import greedy_utilitarian_welfare
from pabutools import election
from pabutools.election import Cost_Sat

instance, profile = election.parse_pabulib("./{path_to_election_file}.pb")
outcome = greedy_utilitarian_welfare(instance, profile, sat_class=Cost_Sat, analytics=True)

The visualiser takes the profile, instance, and outcome as arguments
visualiser = GreedyWelfareVisualiser(profile, instance, outcome)

name is optional and defaults to the empty string
visualiser.render("./{path_to_output_file}/", name="{name}")

from pabutools.visualisation.visualisation import GreedyWelfareVisualiser
from pabutools.rules.greedywelfare import greedy_utilitarian_welfare
from pabutools import election
from pabutools.election import Cost_Sat # This can be changed to a different ADDITIVE satisfaction function

Parse the election and get the outcome
instance, profile = election.parse_pabulib("./demo-pb-files/small.pb")
outcome = greedy_utilitarian_welfare(instance, profile, sat_class=Cost_Sat, analytics=True)

The visualiser takes the profile, instance, and outcome as arguments
visualiser = GreedyWelfareVisualiser(profile, instance, outcome)

name is optional and defaults to the empty string
visualiser.render("./demo-visualisations/small/greedy", name="small")

Parse the election and get the outcome
instance, profile = election.parse_pabulib("./demo-pb-files/medium.pb")
outcome = greedy_utilitarian_welfare(instance, profile, sat_class=Cost_Sat, analytics=True)

The visualiser takes the profile, instance, and outcome as arguments
visualiser = GreedyWelfareVisualiser(profile, instance, outcome)

name is optional and defaults to the empty string
visualiser.render("./demo-visualisations/medium/greedy", name="medium")

Parse the election and get the outcome
instance, profile = election.parse_pabulib("./demo-pb-files/large.pb")
outcome = greedy_utilitarian_welfare(instance, profile, sat_class=Cost_Sat, analytics=True)

The visualiser takes the profile, instance, and outcome as arguments
visualiser = GreedyWelfareVisualiser(profile, instance, outcome)

name is optional and defaults to the empty string
visualiser.render("./demo-visualisations/large/greedy", name="large")

Testing on Additional Files
The path for the rest of the files that the visualisations can be tested on are located in: tests/PaBuLib/All/ The following cell shows you how to run this code.

The path to the test folder
input_path = "./tests/PaBuLib/All/"

Adjust these as needed
pb_file = "france_toulouse_2019_.pb"
output_path = "./demo-visualisations/further-tests/"
name = "france_toulouse_2019_"

Create the path
file = input_path + pb_file

============================= Method of Equal Shares ==================================

Parse the election and get the outcome
instance, profile = election.parse_pabulib(file)
outcome = method_of_equal_shares(instance, profile, sat_class=Cost_Sat, analytics=True)

The visualiser takes the profile, instance, and outcome as arguments
visualiser = MESVisualiser(profile, instance, outcome)

name is optional and defaults to the empty string
visualiser.render(output_path, name=name + "MES")

================================== Greedy Welfare =====================================

Parse the election and get the outcome
instance, profile = election.parse_pabulib(file)
outcome = greedy_utilitarian_welfare(instance, profile, sat_class=Cost_Sat, analytics=True)

The visualiser takes the profile, instance, and outcome as arguments
visualiser = GreedyWelfareVisualiser(profile, instance, outcome)

name is optional and defaults to the empty string
visualiser.render(output_path, name=name + "Greedy")

In []:

In []:

In []:

In []:

In []:

Figure C.4: User Manual to Install and Generate Visualisations Page Two

178

