
Final Report
Group 21

Alex Furmston, Bailey Walters, Hunor Liszka, Leon Chipchase, Mario San-Bento Furtado, Papa Onwona-Agyeman, Yix Wang

1 Introduction
Mentoring is at the heart of Deutsche Bank work culture[1]. Therefore, we have set out to build a prototype system to support
a mentorship program. This system suggests mentors for a mentee, allows users to create and manage meetings, plans-of-action,
and many other features outlined in the rest of this document. Because this project is aimed at building a prototype application,
the scope is limited and does not include deployment (e.g.load balancing) or related aspects handled by other departments
(building a privacy policy). However, we believe we have over-delivered to produce a website with more features than initially
required, each of which is fully integrated with the backend, not making use of any mock data as would be typical with a simple
prototype.

For information on specific requirements, please refer to the Requirements Analysis document.
For more information on the design of the system, please refer to the Design and Planning document.

2 Glossary
• API - Application Programming Interface
• Backend - The server-side component of the system. This includes the storing and processing of data, and communication
with the frontend of the system.

• CI/CD - Continuous Integration/Continuous Deployment
• DOM - Document Object Model.
• Frontend - the client-side component of the system. This includes the user interface and enables the user to interact with
the system.

• MoSCoW - Must Should Could Would, a method of classifying requirements for a system with different priorities.
• React JS - A free and open source frontend JavaScript library.
• MUI - a React component library.
• MVCS (Model View Controller Services) - a software design pattern commonly used to implement user user interfaces,
data, and controlling logic.[5]

• ViewModel - A model of data which is presented to the frontend, and contains all data necessary to represent the object
to the user.

• VPS - Virtual Private Server
• NF/F.C/D X - NF = Non-functional, F = functional requirement, C = customer facing, D = developer facing, X =
requirement ID e.g. NF.C5 = non-functional customer-facing requirement 5

1



3 System Overview
Onboarding
To use our site, a user needs to sign up as a mentee and/or a mentor. To do this, they must enter their details into the signup
page. All communication is encrypted over HTTPS and their password is hashed and salted before being inserted into the
authentication database. Furthermore, the language will default to the system/browser language so long as it is supported (cur-
rently English, German and Hungarian). Next, they are redirected to the Login page. Upon logging in, they will be presented
with an onboarding process. Here, they enter: their name; their business sector; whether they are a mentor and/or a mentee;
and the topics they need help unblocking / are willing to teach. This is all presented in an aesthetically-pleasing and intuitive
way to ease the process. At the end of the onboarding process, they are asked what qualities they would like in a mentor; The
matching system then suggests a list of mentors, ordered by suitability. The onboarding process is supported on all platforms,
including mobile (as shown below by Figure. 1).

Figure 1: The onboarding process on an iPhone 12 Pro

Dashboard
The dashboard is the main page - it is what the user sees immediately after they log in. Therefore, it was important to include
key information here, such as: a user’s upcoming meetings, upcoming workshops, and their active plans of action (as shown in
figure 2).

Figure 2: The “Dashboard” page displayed on a 16:9 monitor.

2



Meetings
Here, a user can view their upcoming and previous meetings. They may cancel a meeting, click “View Meeting” to see (and
edit) more details (as shown in figure 3 about a given meeting or create a new meeting. When a mentee creates a meeting
with a mentor, it sends the mentor a notification that they have been invited to a meeting, which they can accept or choose an
alternative date for.

Figure 3: The meetings page, the summary page of that meeting, the notifications panel.

3



Plans of Action
Plans of action are an important feature for helping users to ensure their mentoring experience is relevant to the goals they want
to achieve. On this page, users can create and view plans of action and the milestones that make up a plan of action; Milestones
can be marked and unmarked and their date of completion is tracked and displayed along with overall progress in completing
the plan of action.

Figure 4: The “Plans Of Action” Page displayed on a monitor.

Workshops
Workshops are a great way of delivering teaching to multiple mentees at once, especially when a topic is in high demand.
Therefore, when many mentees want to learn one topic, our system automatically sends a suggestion to a mentor (who is able
to mentor that topic) that they host a workshop on that topic; clicking on the notification to create such a workshop will
automatically fill in all suggested attendees.

Figure 5: The “Workshops” Page displayed on a monitor.

4



Suggestions Page and Relationships
The relationships page is where a user can manage their relationships with their mentors / mentees. A user may be both a
mentor and mentee, so these lists are separated. As time goes on, a user may accumulate many mentors/mentees so the status
(whether a relationship is active or over) is displayed alongside the mentor/mentee. On this page a user may click a button to
acquire new mentors suggestions which will redirect them to the suggestions page, where they can enter the characteristics of
their ideal mentor and have the system automatically find a list of suitable matches ordered by a suitability rating determined
by the AI. Alternatively, they can enter the name, ID, or the topics taught by a mentor to do an exact search for certain profiles.
Once they have found a mentor they deem suitable, they can request for that mentor to mentor them via their profile.

Figure 6: (left) Alex asks for a proactive mentor and is suggested Bob. (right) Leon’s Relationships page

Settings
It is important for users to be able to edit information which they have entered earlier. Therefore, on the settings page they
may edit the topics that they mentor, the topics they are mentored in, their password, and their language. The first two are
implemented on the frontend but not hooked up to the backend. The only languages available at the moment are English,
German, and Hungarian. However, the frontend infrastructure exists so that any new languages could be added very easily. This
feature was viewed as important due to the international nature of a large company such as Deutsche Bank.

Figure 7: The settings page in English and German. Hungarian is also available.

5



4 Modifications
Overall, the changes made to the system requirements were limited. We aimed to ensure all essential requirements were fulfilled
in order to create the best possible prototype in the given time frame. However, despite this, due to a combination of inaccurate
timeline estimation and unforeseen delays due to continued problems with unfamiliar tooling, some features needed to be
reworked. Other requirements were slightly altered in order to change or improve the features due to new knowledge, learning
more about the system in development and user feedback. The overall product still provides a well rounded application which
fulfils all the essential requirements requested by the customer with changes only being made to non-essential requirements.

4.1 Missed and Changed Requirements
The following subsections outline the missed or changed system requirements as specified in the Requirements Analysis docu-
ment. Each change or omission will have a description justifying the change, or the reason for the omission.

Key: M = modified requirement, D = dropped requirement.

4.1.1 Missed and Changed Non-Functional Requirements

C7 M Ensuring full GDPR compliance would have taken a very long time, and would be best done in conjunction with a legal team
to ensure all laws and regulations are followed correctly. Therefore, we cannot guarantee that the site is fully compliant
but it follows GDPR as much as is practical for a prototype. Many measures were taken to ensure the maximum security
of user data: using a secure site connection; separating user authentication details from the main system; and encrypting
user data in-case of a database breach.

C9 D There will not be an email notification system as it is not an important feature for a prototype, especially when considering
that there is an on-site notification system. Therefore, there is no need for C9.

C16 M Testing response times can be very time consuming, particularly for the prototype, therefore the main goal was to test the
functionality of the system using unit tests and endpoint tests. As the system would be scaled, this would be important
to ensure the quality of life for the users using the system.

4.1.2 Missed and Changed Functional Requirements

C8 D Mentors will not be able to mark milestones as complete for mentees they are in a relationship with. This requirement
was not implemented because we deemed it more fitting to the rules of mentoring for plans of action to be managed by
the mentee alone.

C10 M Instead of a mentee being able to suggest multiple time slots, a mentee can suggest one time slot. The mentor can then
choose to accept the meeting or suggest an alternative time. Therefore, the site still allows a mentee to book a meeting in
a time slot, but in a slightly different way.

C11 D C11 was not considered essential to ensure the full functionality of the system, as mentors and mentees are able to write
the location (room) in the meeting invite description. However, for quality of life and ease of use this is a feature which
should be added in the future.

C12 M Although not a requirement, the design doc specified that C12 would be implemented with a single-matching system (for
recommending multiple mentors to a single mentee, in order of suitability) as well as a multi-matching system (for matching
multiple mentors with multiple mentees at once). The latter system was dropped as it was not considered important for
the proper functioning of a prototype or even a final product. Furthermore, it would provide only minor benefits to users.
The single-matching system works as intended.

C15 D C15 was not judged to be important to the functioning of the site as mentors and mentees can specify their location in their
profile description and make their own decisions based on that. Therefore, C15 was dropped in favour of more important
requirements.

C18 D This functionality was removed since the system is still a prototype, and other features which still needed to be implemented
were prioritised over this.

4.2 Non-Requirement Changes
While the database was almost identical to what it had been planned to be, there were some minor alterations in the relationships
- many to many, many to one, or one to one, and various tables required additional fields in order to function as specified. The
new database diagram is displayed in figure 11.

The UI has undergone extensive changes and additions from the initial wire-frames. While colourblindness support for Protanopia,
Deuteranopia and Tritanopia has been maintained[8], the colour-scheme has been expanded for a more vibrant and expressive
visual language, aimed to better differentiate repetitive information such as business sector by a brief glance, aided alongside by
greater use of iconography. Unfortunately, the aforementioned benefits will not affect users with Monochromacy colourblindness,
although their ability to use the application is unaffected.
Another significant area of change is the inclusion of several additional pages to better fulfil the requirements, such as the search
page.

The design doc specified that F.C12 would be implemented with a single-matching system (for recommending multiple mentors
to a single mentee, in order of suitability) as well as a multi-matching system (for matching multiple mentors with multiple
mentees at once). The latter system was dropped as it was not considered important for the proper functioning of a prototype

6



or even a final product. Furthermore, it would take a lot of time to implement would provide only minor benefits to users. The
single-matching system works as intended.

5 Discussion of Development

5.1 Development Tools Used

5.1.1 Source Control - Github

Git was used for version control and Github was used for remote hosting and CI/CD (continuous integration / continuous
deployment). This is a system that most of our team was familiar with and is rich with features that were useful during
development. The repository consisted of a “dev” or development branch. This was linked to a VPS (Virtual Private Server),
and each time the dev branch was updated a series of Github Actions were run (such as linting). If the Github Actions passed
and the build succeeded, the updates would be pushed to the VPS. Ideally, each time dev was updated all unit tests would have
been run before making any changes live to ensure any changes made would still pass all unit tests to ensure the “dev” branch
was always fully functional so team members could rebase their branches without fear of introducing unrelated bugs. However,
towards the end of the development these actions could no longer be run as we reached the running-time limit for Github Actions
imposed on private repositories.

Each time a new feature was implemented, a new Git branch would be created for isolation between independent features and
merged once the feature was fully implemented; Isolating changes in different branches rather than directly committing to the
“dev” branch mitigated the potential issue of code erasure significantly, preventing any large setbacks during development.

5.1.2 Development Environment - Visual Studio

Most of the team used was Visual Studio 2022 as their development environment, this was chosen since it had the widest range
of features for C# development due to official support from Microsoft who develop both the IDE and language. The Github
integration and build tools also helped significantly streamline our development process.

5.1.3 Language - C#

Our chosen programming language for the backend of the system was C#. Initially this seemed the most appropriate choice for
the team since it is an Object Oriented Programming language - a paradigm that the team was very familiar with, allowing us
to achieve NF.C12. Furthermore, C# is slightly less verbose than Java. In hindsight, Python may have been q more appropriate
language for such a short-term project due to the speed at which Python code can be written. However, it is very easy to write
insecure, error-prone code in Python due to its dynamic typing which does not catch type errors at compile time, which is why
we decided not to use it. Overall, C# was a decent choice and would make further developments after the prototype stage easier
and more sustainable.

5.1.4 Framework - ASP.NET

ASP.NET is the industry standard for web development in C#. It was a good choice for our group as some of us already had
experience with ASP.NET and most of us had experience with C#. Furthermore, it allows for good scalability, which would be
very important if this prototype were to be developed into a full product. Unfortunately, ASP.NET is more complex that some
web frameworks, such as Flask or Django. The ease-of-setup of these frameworks would have been beneficial when considering
the tight timeline of this project. However, once everyone had gotten more familiar with ASP.NET, development was very
efficient and we benefited greatly from the highly-structured nature of ASP.NET development. Therefore, this can be considered
a good choice of framework overall.

5.1.5 Language - TypeScript

Our chosen language for the frontend was TypeScript. This is due to the static type checking capabilities offered by it over
standard JavaScript which results in a large number of runtime bugs being caught at compile time instead, providing higher
productivity during development and greater security in the application. We believe that this was a good decision as backend
modifications of the REST API schema were easily adapted on the frontend by only modifying the TypeScript interface definitions
which would instantly flag up all files that still used the old schema. Unfortunately, a pitfall not covered by the static type
checking is when external IO is involved such as in network communication for API calls, this is because IO happens at runtime
and all type information is stripped after compilation, resulting in the type checker being unable to correctly verify conformance.
To mitigate this, we used a layer of adapter functions that handle network communication so any type faults are at least easily
isolated to the adapter layer.

5.1.6 Framework - React

We have chosen to use React as our frontend framework as it is the most popular of the industry standard frameworks. We feel
this was a good choice due to React being a fairly light and simple framework which allowed for the frontend team who were
mostly experienced only in backend development to learn as the project went on. Furthermore, React is a purely declarative
web framework based around composition, where state and logic is isolated from parent components, allowing for greater fault
isolation and the unique advantage of being able to insert pre-made components (such as those of the MUI library we utilised)
for significantly increased productivity during development.

5.1.7 Containerisation - Docker

Docker[6] is the industry standard for containerisation. We used it to ensure our site worked identically on every team member’s
computer. Furthermore, our use of Docker allowed us to use a Github Action to automatically push our changes from the ”dev”

7



branch to a remote server without the configuration needing to be changed. The remote site was hosted on Digital Ocean, a
cloud hosting provider, at https://www.cs261group21.com.

When setting up Docker, we ran into a lot of configuration problems. For example, we encountered end of memory errors, and
different configurations were needed for Linux and Windows. In spite of this, we persisted and the time spent wrangling with
Docker greatly decreased as the project progressed and the productivity benefits of a consistent environment outweighed the
initial cost of learning and setting up Docker.

For this project, we used 4 containers: backend, frontend, main database, and authentication database. The databases are
persisted on the host machine whilst dependencies aren’t due to the OS-specific binaries required by certain dependencies (such
as esbuild). As multiple team members worked on Windows, it made more sense to separate it from the the Linux-based docker
containers. We managed docker on windows with docker-compose. Whilst this could be done with Kubernetes, that was deemed
unnecessary due to the limited scope of this project.

5.2 System Components

5.2.1 Authentication

The tokens themselves are stored as Cookies in the user’s browser. They are only sent on HTTPS requests and the SameSite
attribute is set to strict to defend against CSRF[12] attacks. If an authenticated user is required for a given action, the request
is passed to the AuthenticationMiddleware which checks the validity of the token. As these tokens are stored in the database,
if a user’s account is compromised, all of their login tokens can be revoked to ensure no malicious actor would be able to access
the system. This might be necessary, as tokens are designed to either last a single day, or when the user requests it, 31 days;
expiration of tokens is handled by the backend for greater security, as the client-side expiration date of cookies may be tampered
by the end user. To maximise flexibility, the system was designed to be able to revert to a Java Web Token-based authentication.
This could happen when the system needs more scaling and the security feature of access revocation is not necessary.

5.2.2 Matching System

Figure 8: Matching System

The matching system consists of three main func-
tions: GetScore, SearchMentors, and Suggest-
Mentors. As with the rest of the backend, the
matching system was written in C# with the core
logic being handled by the Mentor Suggestion Ser-
vice.

GetScore calculates the compatibility of a mentee-
mentor pairing based on the following formula: score(mentor,mentee) =

(1× topics in common
topics mentee wants to learn + 0.3× average rating across common topics

5

+0.5× tags in common
tags the mentee wants + 0.1× overall mentor rating

5 )× 100÷ 1.9

Note: ×100÷ 1.9 is there to make the overall score a percentage.
The weights of these factors were carefully selected based on experimentation with the test data to ensure what we viewed as
the best matches would be scored appropriately. If a mentee and mentor are in the same business sector or have no topics in
common then the score would be 0, the mentor would not be recommended and the rules of mentoring[7] would be upheld.
Therefore, functional requirement C13 is fulfilled.

8

https://www.cs261group21.com


SearchMentors searches through the database to find mentors matching the search query. Users are able to search by:
ID Find the mentor whose MentorID exactly matches the provided ID.

Name Search for mentors who contain the given string as a substring of their first and/or last name.
Topic Search for any mentors willing to teach 1 or more of the listed topics.

Figure 9: User “Alex” requests that the site recommend a
“proactive” mentor who would be a good match for them.
This request is fulfilled using the SuggestMentors function.
“Bob” is recommended, with a suitability score of 79%.

By default, searches (not suggestions) involving topics will be sorted
by the number of topics the mentor and search query have in common
(alternatively by first/last name, business sector, and rating (mentor’s
global average rating)) and will fetch results based on matching IDs,
partially matching names and/or mentoring capability in the selected
topics.

SuggestMentors returns valid mentor suggestions for a given mentee
(valid means that a mentor and mentee are from a different business
sector and the mentor is willing to mentor at least 1 topic that the
mentee wants to learn). It gets suggestions by initially filtering out
all invalid mentors for the given mentee, then selecting all mentors in
decreasing order of suitability (as determined by GetScore). Although
not currently used, the method has the capacity to only search up to
a set number of mentors to improve the efficiency of the suggestions in
a large database. Note: SuggestMentors will work even before many
ratings are added into the database as it is able to use factors (e.g.
topics in common) that don’t rely on reviews from past mentees.

In summary, SuggestMentors clearly fulfils C12; C13 is fulfilled as Sug-
gestMentors won’t suggest an invalid mentor and the backend won’t
let mentees create a relationship with an invalid mentor; and C14 is
fulfilled as GetScore provides a score for mentor-mentee pairings based
on the relevant parameters. C15 was not completed. However, it was
rated as a ’could’ under our implementation of the MoSCoW system, so
it was considered more important to work on other features. Further-
more, mentees can manually choose their mentor based on location.

5.2.3 Frontend/UI

The frontend was developed as a Single-page application[11] in Type-
script using the React library. The frontend only retrieves necessary
data from the backend via the REST API, allowing for optimal per-
formance due to minimised network activity.
Because this is a single-page application, routing is handled client-side
by the React Router library[13]. This gives further performance ben-
efits and allows the website to feel dynamic and responsive, as page
reloads are eliminated and only the altered parts of the DOM are re-rendered on navigation.

The frontend is decomposed into individual React components encapsulating only their own necessary logic and state. They
are organised into a hierarchical tree with each component managing its own life-cycle and cascading changes down onto its
child components. Separating these features into different components allows for vastly increased re-usability and fault isolation,
allowing for increased productivity and faster debugging.

The necessary models used by the REST API are defined as TypeScript interfaces and interaction with backend endpoints is
handled by a layer of functions that correspond to each endpoint, to allow for easy dependency inversion by swapping out the
layer for one that returns fully correct mock data instead of using the backend, this allows for easily testing the frontend in
isolation to any potential backend faults.

The UI makes use of MIT-licensed React component library, MUI[9] for increased productivity within the limited time constraints.
Furthermore, use of these widely-used components helps users to feel more familiar with our site.

A somewhat systematic approach for frontend development was initially chosen. However, despite these plans and frequent
communication between frontend developers, development fell behind the schedule outlined in the Gantt chart. This can be
attributed to a lack of prior experience with the various frontend technologies used, which led to learning and development
occurring simultaneously, slowing down development time substantially. This issue was solved by restructuring roles within the
team, with backend developers frontend areas.

5.2.4 Testing

As part of our Scrum approach, we intended to implement test driven development. We used xUnit[3] to perform unit tests on
our C# code, Postman[4] to perform endpoint tests, and manual integration testing. The goal was to write our unit tests at the
start of each sprint cycle, then check that any features implemented in the sprint cycle were correct. This would have given us
an indication of the progress we had made in each sprint before starting new tasks. However due to delays in implementation

9



and our lack of familiarity with xUnit and Postman, this was not possible. Instead, it was often more practical to write tests
at the end of a Scrum cycle. However, each section of the project was still thoroughly tested. We split our testing into 3 broad
categories:

• Unit Tests (xUnit)
Unit tests were used to test the services, which were used by the controllers. These tests ensured that data passed to services
by other parts of the website would be correctly manipulated and the correct output returned. These tests included edge-
cases (such as trying to match users with themselves in the matching system) to guarantee that our services were as reliable
as possible. The organisation of the backend into services and controllers means that these were the most important tests
for the backend (the controllers are mostly wrapper functions of corresponding service functions), as such these are the
most extensive tests.

• Endpoint Tests (Postman)
Endpoint tests were used to determine whether the API endpoints were working correctly, and that the controllers would
receive the data as intended. This minimised the effort to integrate the frontend and backend as we knew our endpoints
were working correctly.

• Integration Tests (Manual)
Integration testing was performed manually as the time saved from automatic testing would not have been worth the time
taken to develop automatic tests. Nonetheless, integrating testing made sure that the frontend and backend were properly
integrated and the user would have full access to the data they required which was stored in the database.

Unit and endpoint tests were continuously run throughout the development of new features, checking that any new development
would work with the system as a whole before being merged into the ”dev” branch. Integration tests were performed periodically
(upon any merge into ”dev”).

5.2.5 Backend/API

For our backend development, we used the MVCS (Model View Controller Service) paradigm as a basis for our development.
This splits the backend into:

• Model:
A structure which holds the data and logic for a particular object.

• View:
The visual representation of the model which is displayed to the user.

• Controller:
The endpoints of the API which handles any requests made by the client.

• Service:
An additional layer of decoupling in the system which acts as an intermediary between the database and the controllers
themselves.

Each controller uses a set of services, each of which would insert, update, delete or retrieve data from the database which would
then be returned to the user.

For the connection to the database, set of contexts were used to allow the backend and the database to communicate. In order
for the frontend to be able to communicate with the backend, a set of controllers were created, each containing a set of API
endpoints which processed all requests made to the system. The controllers implemented were:

1. AppFeedbackController
The AppFeedbackController handles the storing of feedback submitted by users. This uses the AppFeedbackService which
converted an AppFeedback view model to an instance of an app feedback object to store in the database. This controller
was created to fulfil the requirement that the users of the system are able to provide feedback about the system. This
means the backend was implemented to achieve the functional requirement C3, as users’ feedback would be able to be
processed and stored.

2. AuthenticationController
The AuthenticationController handles login and session-related activities. It generates tokens on login, validates them when
passed in from requests. It is also the controller, through which the user’s ID is fetched, which is required for requests by
other services.

3. MenteeControler
The MenteeController handles all data relevant to a user who is registered as a mentee. It uses the services PlanOfActionSer-
vice, ScheduleService, MentorSuggestionService, and RelationshipService. These services provide all relevant functionality
to the mentee. This allows the mentee to update any relevant information to their active relationships, their schedule,
their plans of action and to search for and choose a new mentor.

4. MentorController
The MentorController handles all data relevant to a user who is registered as a mentor. It uses the services PlanOfAc-
tionService, ScheduleService and RelationshipService. This allows the mentor to update any plans of action their mentees
are currently undergoing, manage their schedule - their upcoming meetings and workshops, and manage any relationships
with mentees, provide feedback or manage a plan of action.

5. MiscController

10



The MiscController returns the full set of business sectors, topics and mentor tags and uses the MiscService to achieve this.
The data from here will be used to display to a new user the business sectors which currently exist, the topics they would
like to teach or learn, and the different tags that a mentor could choose to define their teaching style.

6. OnboardingController
The OnboardingController is used to handle user registration. This gets the personal details for a user after they have
registered for an account. This includes their full name, business sector, topics they want to learn/teach and if they want
to be a mentor, a mentee, or both.

7. PersonalController
The PersonalController handles all data relevant to specific users. It uses the PersonalInfoService and the ScheduleService,
which allows users to view the specific details about themselves, such as their mentoring profile and their schedule. This
also allows the user to delete their account and any data which has been stored associating to that account to maximise
how closely GDPR regulations have been followed.

8. RelationshipController
The RelationshipController allows users to manage their relationships. It uses the RelationshipService to achieve this,
meaning the user can view information about a specific relationship, all their current relationships, and also end a rela-
tionship - when they no longer wish to mentor/be mentored by this particular individual. The information about past
relationships is maintained in order to keep a record of the past experiences and feedback the user has had.

9. UpdateProfileController
The UpdateProfileController allows the users to update their personal information. This uses the UpdateProfileService,
and allows the user to change the business sector - in-case they have moved to a new position, change whether they would
like to become a mentor or a mentee, or manage the topics which they are teaching or are learning.

Each of the controllers allow the user to effectively receive and update information relevant to them, whilst compartmentalising
different components of the system so that each request only requires a small subsection of the system. This allows for improved
maintainability, more readable, decoupled code, and lets different members of the backend team work in different areas of the
project in parallel speeding up the development of the system. Furthermore, the design follows OOP design principles[14] (NF
C12). Figure 10 illustrates how the MVCS model is implemented in the system, as well as how the services provide an extra
layer of compartmentalisation between the system as a whole, acting as an intermediary to the database contexts. “Mentorship
Services” refers to all services but the Authentication and AppFeedback Service, to maintain clarity in the diagram.

Figure 10: API Diagram

The API created is documented using Swagger, an Interface Description Language used to describe APIs. Each endpoint has
a summary of its functionality, its parameters and the type that it returns. This was done to ensure the future readability
and maintainability of the system by providing ease of access to documentation, helping to achieve the requirement: NF.C11.
Moreover, this also allows the frontend team to look at the generated Swagger Doc (the generated document created from the
API documentation), to understand what exactly is needed for the API calls. This makes frontend development of these calls
far more efficient and less prone to issues with integration.

11



5.3 Database
As shown in figure 11, the database was split into three contexts. This is far less than initially intended, as we had planned
to break up the contexts further to ensure that if some data was needed from the backend, only the tables directly related to
this access should be accessible. However, many inter-table relations would have spanned affected multiple contexts. Therefore,
configuring these contexts would have been difficult, if not impossible.

• The Authentication Context
The user table is stored in the authentication database, which is the link to the rest of the system. This is then separated
into a separate context; therefore, whilst handling authentication of the user, only the needed database tables are able to
be accessed. This improves both the security and maintainability of the system, as the size of the system increases due to
keeping distinct data in separate containers.

• Mentorship Context
The Mentorship Context handles all data in green in figure 11. This is the main system context, and is used by all
controllers which handle user, relationship, and workshop data. The reason for the singular context covering all these
tables was due to the interconnected relationships of all the tables. Therefore, almost anytime data from a single table was
needed, another entity which was related to that table would be required. Defining these relationships in a single database
context was the most appropriate choice.

• App Feedback Context
The app feedback table is kept separate from the rest of the system because there are no entity relationships linked to it.
This meant that it could be stored in a separate context - only the required table was needed, reducing the load on the
system. This also ensures no other data can be accessed maliciously.

The separation of these contexts helps us to achieve the requirement of maximising GDPR compliance, as it prioritises the safety
of the data on the system at all times. This also ensures that only the data required for the user at any stage is available to
them.

Figure 11: Database Entity Relationship Diagram

12



6 Deployment, Maintenance and Scaling
To simulate deployment and ease testing of software, we set up a Github Action to deploy to a remote server. This ensured that our
code would both build successfully, and could be run on a generic host.

Figure 12: Deployment/Build pipeline
used during development

Another Action was created for checking the formatting on the backend, ensuring confor-
mant linting across the repository. This decreases the time for a developer to get used
to sections of code, which they themselves have not written, as the styling is consistent
file-to-file. The Model-View-Controller-Service pattern implemented in the program builds
upon the MVC paradigm by adding an extra service layer between the model and con-
trollers. This results in a more decoupled system, leading to lower maintenance costs in
this medium-sized, growing project. For the scale of the prototype, we had decided the
usage of Docker would fit the project. Nevertheless, in the case that a single machine
may not keep up with user demands, there are options to handle the stress. The easier,
more basic solution: Docker Swarm. This would be a plug-and-play upgrade on the cur-
rent Docker Compose setup, as it builds upon it to allow multi-host containerisation. If
further scaling is necessary, more fine-grained scaling can be achieved by Kubernetes, in
conjunction with breaking up the main database into separate microservices.

7 Evaluation - Product

7.1 Testing and Validation

7.1.1 Unit Testing

Unit tests were done using xUnit[3], an open source testing tool for the .NET framework.
The primary goal of our unit tests was to ensure that all the services worked as intended to
fulfil the requirements set for the project. We wrote test-cases containing valid data and
invalid data in order to determine whether the service would process the data correctly.
We specifically tried to write tests to cover all edge-cases.

To connect to the existing database, fixtures were used with a mock logger to mimic the
state the system would be running in during its use. All tests are done using data provided
by a dump file. The tests were split across the different services as follows:

Unit Test Summary

Service Total Tests Tests Passed Test Success

AppFeedback 1 1 Yes
MentorSuggestion 10 10 Yes
Misc 2 2 Yes
PersonalInfo 6 6 Yes
PlanOfAction 17 17 Yes
RelationshipService 18 18 Yes
Schedule 39 39 Yes
UpdateProfile 15 15 Yes

Total 108 108 Yes

The total test output is displayed in figure 13.

Figure 13: Test Result Output

7.1.2 Endpoint Testing

For the testing of the controllers and API endpoints, Postman[4] was used to create the appropriate requests for the creation,
deletion and updating of data in the system databases. These tests allowed us to determine that the frontend would be able to
communicate with the backend once it had been fully implemented. This was important as the front and backend were developed
independently. Therefore, these tests ensured that there were minimal problems integrating both parts of the system. As it
turned out, these tests did their job and there were no major issues with integrating the front and backend, satisfying NF.C15.

13



For all tests where a user must be logged in, the requests made also contained an authorisation token. This token authenticates
that the requests made are valid and carried out by a user who had the appropriate permission to update the associated data.
Furthermore, wherever a UserID is required for the request, this is taken from the authorisation middleware rather than as a
part of the request body or query.

User endpoints

The user endpoint tests test whether the user registrations and onboarding processes work as specified. This includes
• Registering as a new user
• Giving their personal details - name and business sector
• Selecting whether they would like to be a mentor, mentee or both
• Choosing the topics that they would like to learn or teach

The following tests illustrate they key components of onboarding that a new user would need to do.

Test Case Test Description Test Input Expected Result Actual Result Test Success

Create a new
user.

Testing whether
registering a new
user is successful.

Email:
test@test.com,
Password:
asdASD123

HTTP response code 200
and message: ”Registra-
tion successful”

HTTP response code 200
and message: ”Registra-
tion successful”

Yes.
F.C0

Give the per-
sonal details.

Testing whether
after entering per-
sonal details, a new
Personal instance
is created for that
user.

FirstName:
Leon,
Surname:
Chipchase,
BSID: 1

A new Personal instance
will be created with the
details specified.

A new Personal instance
was created for the corre-
sponding user.

Yes.
F.C0

Setting a
new users’
mentor and
mentee tags,
and selecting
their topics.

Testing whether
a new user can
successfully regis-
ter as a mentor,
mentee or both,
and specifying the
topics which they
would like to teach
or learn about.

MentorFlag:
true,
MenteeFlag:
false,
TopicIDs:
2,4,6

The users mentor flag
is set to true, and the
mentee flag is set to false.
A new Mentor instance
will be created for the
user, giving them a men-
toring profile, and a set
of MentorTopic instances
will be created for the
TopicIDs specified.

All information was
stored correctly, required
instances of MentorTopics
and Mentor were cre-
ated, and the mentor
and mentee flags were
correctly udpated.

Yes.
F.C1

Mentee Endpoints

The Mentee endpoint tests verify that a user who has registered as a mentee is able to do everything they should be able to do.
This includes:

• Managing their relationships with their mentors - updating and creating plans of action, setting up meetings and rating
their mentor.

• Searching for new mentors, and finding suggested mentors based on their criteria.
• Accepting or rejecting any meetings or workshops.

These tests illustrate how a mentee would communicate with the system and what data they need to provide in order to be able
to carry out these requests.

Test Case Test Description Test Input Expected Result Actual Result Test Success

Creating a
new plan of
action.

Testing whether a
mentee can create a
new plan of action.

Description:
Develop
Java,
TopicID: 3

A new plan of action is
created for that Mentor-
Mentee Relationship with
the chosen topic.

The new plan of action
was created for that rela-
tionship.

Yes
F.C9

Searching for
a new men-
tor.

Testing whether
the correct mentors
come up based on
the search query

SearchQuery:
“Java”

The list of mentors are
queried based on whether
they can teach Java and
returned to the user.

The correct list of men-
tors were returned to the
mentee.

Yes.

14



Find a new
mentor
based on the
suggested
matching of
the system.

Testing whether
the user finds a
new mentor based
on their preferences
and compatibility.

desirebleTags:
“nice”,
“proactive”

The set of tags are sent
to the backend, and men-
tors are found based on
the query. They are then
checked to ensure they are
in different business sec-
tors.

The correct set of men-
tors are returned, with no
invalid mentors being dis-
played.

Yes.
F.C12

Creating
new mile-
stone.

Testing whether a
user can create a
new milestone for
their plan of action.

Name:
Learn
Python,
OrderValue:
1

A new milestone is created
for the corresponding plan
of action, then the plans of
action are ordered based
on the OrderValue given.

The milestone was suc-
cessfully created, and the
milestone order was up-
dated accordingly.

Yes.
F.C8

Creating a
new meeting.

Testing whether a
user can create a
new meeting with
their mentor.

StartTime:
18/03/2022
12:20,
Duration: 20

A new meeting is created
at the specified date and
an invite is sent to the
mentor in the relationship.

The meeting was created
at the specified date and
the mentor was notified.

Yes.
F.C10

Providing
mentor
feedback.

Testing whether a
user can provide
feedback on their
mentor.

MentorID:
(mentor
guid),
NewRat-
ing: 4.0

The rating for that men-
tor by the mentee will be
updated to 4.0.

The mentor rating was up-
dated successfully

Yes.
F.C14

Accepting a
workshop in-
vite.

Testing whether a
mentee can success-
fully accept an in-
vite to a workshop.

AcceptInvite:
true

The invite is accepted,
and the mentee is added
to the Workshop Mentees
table.

The mentee was success-
fully added to the table of
attending mentees.

Yes.
F.C17

Mentor Endpoints

The mentor endpoints verify that a mentor is able to use the full functionality that is required for them:
• Creating a new workshop
• Getting a suggestion for a workshop that is in demand by other mentees.
• Accepting a mentee meeting

The following tests outline the key functionality for the mentor endpoints. All endpoint tests which are very similar to those
previously tested in the section above have been left out.

Test Case Test Description Test Input Expected Result Actual Result Test Success

Create a new
workshop.

Testing whether a
mentor can create a
new workshop.

Date:
18/03/2022,
TopicID: 1,
Title:
Python,
Description:
Learn
Python

A new workshop is cre-
ated, and the list of invi-
tees is generated.

A new workshop is created
and a set of invites is cre-
ated for the invitees.

Yes.
F.C17

Get a work-
shop sugges-
tion.

Test whether
the system cor-
rectly suggests a
workshop for the
mentor.

None The system searches
through mentees who
want to learn a topic
and returns the workshop
suggestions.

The correct list of work-
shops were returned.

Yes.
F.C16

Accept a
mentee
meeting.

Accept a request
for a meeting from
a mentee.

AcceptInvite:
true

The invite is accepted and
a new meeting is created.

The new meeting was cre-
ated.

Yes.
F.C7

15



App Feedback Endpoints

This endpoints reflects how a user would submit feedback about the system.

Test Case Test Description Test Input Expected Result Actual Result Test Success

Register a
new instance
of feedback.

Testing whether
the user is able to
register a new in-
stance of feedback.

Description:
Perfect,
Type: other

A new feedback instance
will be inserted.

Addition of the feedback
was successful.

Yes.
F.C3

7.1.3 Frontend Blackbox Testing

To gather an understanding of what users unfamiliar with our site would think of it, we hosted the site on https://cs261group21.
com and sent the link to non-computer-scientist friends and family. We gave each of them a list of tasks to do, differing by account
type:
Both mentees and mentors:

• Create an account (we let them choose whether to be a mentor or mentee) and complete the onboarding process.
• Send site feedback.
• Join open workshops.

Mentors:
• Create a workshop.
• Receive meeting invite and suggest an alternative time instead.
• Write meeting summary and record as finished.

Mentees:
• Create a meeting.
• Create a plan of action and add goals to it.
• Record meeting as finished.
• Rate mentor.

The overall feedback we received was that the site looked ’very professional’ but ’slightly boring’. Users liked the plan of action
page and found it very easy to use. However, a common point of criticism was the disorganised presentation of the upcoming
schedule as a list of upcoming events; a calendar or some sort of better visual presentation of their schedule would have been
useful. A point of confusion was when forms such as creating meetings are filled correctly but violate invariants such as exceeding
the duration limit on the backend. In such cases the backend error is not returned to the frontend and users are left confused
as to why their form was not accepted. However this was relatively uncommon and common form errors, such as leaving out
required fields, are clearly shown to the user. Lastly, users often tried to click various information cards and names (such as
meeting summaries and mentor names) to attempt to get further details which was not supported by our initial design.

In response to the feedback collected, we made significant visual styling additions to the UI resulting in the modifications detailed
above in Non-Requirement changes which aimed to address the “boring” presentation of the application at the cost of weakening
full Monochromacy colourblindness support. Furthermore, we implemented several additional informational popups and new
pages that are linked to the existing components that users can now click on for a detailed view (names linked to profile summary
popups, meeting cards linked to detailed view via a menu, etc...). Unfortunately, due to feedback being taken relatively late
in the development cycle, time constraints prevented us from implementing certain features. We did not have time to entirely
redesign the UI for viewing the schedule. Nor did we have the time to make intrusive backend and frontend changes to propagate
invariant violations to the end user. However, these changes should be relatively simple to implement given more time and
should not require extensive reworks due to the decoupled architecture and form invariants were instead also implemented on
the frontend, to reflect the requirements of the backend.

7.1.4 Testing Summary

Overall, the testing on the system was as rigorous as possible for the time available. The unit tests verified the services acted
properly on correct data, erroneous data and edge cases. The Postman API tests ensured the frontend was properly able to
communicate with the backend of the system. And the frontend testing verified that the end users were able to use the system
as intended. However all tests specified were carried out by members of the team who had an intimate knowledge of the system.
This has the following issues:

• The team know how the system works, therefore may unintentionally avoid sections which may break the system.
• The team know how to navigate the UI, therefore testing of the effectiveness of the frontend is difficult.
• Purely using unit tests and Postman tests will inevitably miss cases which have potential to cause an error.

A fix for this would have been to have a wide range of users testing the system. Then monitoring how the system responds, and
identify where or how the user is able to break a component. However this is a very time-consuming task, and is not feasible for
a prototype at this stage of its development.

16

https://cs261group21.com
https://cs261group21.com


7.2 Matching System and Relationship System
The rules of mentoring state:

1. “A mentee should always drive the relationship, setting the agenda and approaching the mentor when help is require”.
This is maintained as mentees are the only people who can start a relationship and they are the only ones who can create
a meeting.

2. “A mentor will always give up time to the mentee”. This is maintained as mentors may only accept or suggest an alternative
date in response to a meeting / mentorship request.

3. “The mentoring arrangement should be based on themes and topic areas that they require help unblocking to achieve
success.” GetSuggestions clearly fulfils this as its GetScore function is based on the number of topics a mentor teaches
that a mentee wants to learn.

4. “A mentor should always be from a different business area to the mentee.” This is enforced in the relationship service
(where mentor-mentee matching are actually created) and the GetSuggestions function in the suggestion service (where
matchings are suggested).

Out of requirements F.C6 - F.C15 (all the matching system and relationship system requirements), all those rated ’Must’ on
the MoSCoW system are fulfilled. Only 2 requirements, F.C15 and F.C11 (’Could’s) have been dropped. Therefore, overall the
Matching System and Relationship System can be considered to have been very successful.

7.3 UI
The user interface was developed mainly through the use of the MUI [9] React component library. MUI is a robust library of
high quality components usable under the permissive MIT license, from the navigation bar to popup modals. It allowed us to
efficiently implement our website design and develop the frontend faster than would have otherwise been possible.

The MUI framework is heavily customisable, with each component having a variety of attributes to specify both styling and
functional properties. This allowed us to adapt the website design to match our accessible colour scheme and unique matching
system. For example, you can see below that the chips to select topics are differentiated by colour, using a hashing algorithm
that picks from our preset array of colourblind-friendly colours. This ensures that any additional topics added will not require
any backend nor frontend code changes and will be automatically accounted for.

Figure 14: Different colours for different topics.

We used CSS media queries to meet our responsiveness requirement, selectively rendering components to allow for our website
to be adapted for use on desktop computers, tablets and mobile phones. For example, on smaller screen sizes, the navigation
bar is collapsed into a hamburger menu (as shown by Figure 15).

We have tested the web application on the latest supported versions of all major browser engines (including Gecko (Firefox),
Blink (Chrome, MS Edge, Opera) and Webkit (Safari)) on all major platforms (Windows 10+, MacOS, Linux), ensuring full
functionality and a consistent experience (requirement NF.C19 ). (See below)

17



Figure 15: The plan-of-action page viewed from Desktop (Firefox) and iPhone 11 Pro. Please note these are different plans of action,
despite the similar names.

In terms of meeting our usability requirements NF.C18, we ensured that our website would be clear, concise and easy to use by
implementing a wide variety of intuitive controls for easy interaction; Primary action buttons (Create Meeting, Join Workshop
etc.) were given more visual weight to draw the user’s attention. Iconography was also used throughout the site to enhance
various components and improve the user experience.

7.4 Security and Data Protection
As mentioned in the Requirements Modifications, requirement NF.C7 was modified. Instead of the system being fully GDPR
compliant, we decided to make the site as close to being GDPR compliant as reasonably practical for a prototype built in 10
weeks without the assistance of a legal team. This is an acceptable compromise when considering that the system is a prototype
and other requirements must take precedence.

Nonetheless, the site has plenty of security and data protection features. Passwords are pre-hashed with SHA384, then using the
BCrypt[2] scheme and a salt generated by BCrypt.Net.BCrypt.GenerateSalt(), fulfilling requirement NF.C5.D1. The database
is encrypted with ASP.NET encryption, satisfying NF.C5.D0. Personal user data is anonymised in the database, accomplishing
NF.C7.D0. We achieved NF.C8 as the website uses HTTPS. Finally, authentication data is stored in a separate database to
everything else, accomplishing NF.C6 and further increasing the security of the website.

Functionality for deleting user data was implemented for both the main database and the authentication database. In the
authentication database, all data relating to the account is deleted permanently, including login information and authorisation
tokens, but in the main database, all personal information is anonymised. This ensures that whilst a users’ account no longer
exists, records that past meetings occurred will still exist.

To summarise, although the website may not be fully GDPR compliant, every other data protection and security requirement
was met. Clearly, very strong fundamentals for data protection and security have been built into the core of this prototype. This
is very important and enables further security measures to be added in a later stage of development.

7.5 Summary of Product Evaluation
Overall, we believe that the prototype that we have produced is a success. In fact, we have gone beyond what would be required
for a prototype and have linked almost every frontend feature up to the backend, resulting in a near fully functional product.
This is an example of the robustness of our backend.

An indicator of success is that all 108 of our backend tests passed successfully. This further highlights the robustness of both
our test-driven development process and the implementation of the backend in the product.
Despite not meeting all of the requirements set out in the requirements document, we have ensured that almost all of the Must
requirements and many of the Could and Should requirements were successfully implemented.

Initial feedback showed a generally positive response to the website, both functionally and aesthetically, another indication of
the success of our prototype.

18



8 Evaluation - Process

8.1 Development Methodology
We adopted a Scrum-based[10] methodology with influences from plan-based methodologies such as waterfall. Our design
document specified that we would allow for flexible team roles, use a Github project board for organisation, Github Actions for
continuous testing, and follow 1-week sprint cycles. Due to the concrete deadlines imposed on the requirements analysis, design
document, video demonstration, and final report, our methodology involved some practices typical of plan-based methodologies:
we gathered to plan the architecture of the project and tightly coupled parts such as the database schema before starting
development.

The flexibility provided by allowing team-members to change roles partway through the project was invaluable. Near the end
of development, our project manager and scrum master switched away from their roles working on the backend to work on
frontend integration and styling respectively. This helped our frontend, which was behind schedule, to catch up with the rest of
the project. Furthermore, our data scientist and other backend developer took the lead on writing the report and our database
engineer started working on the video demonstration towards the end of the project. These transitions in role were partially based
on how complete certain parts of the project were and could not have been accounted for with a purely plan-based methodology.
Hence, Agile working was beneficial to our project.

When our Github project board was used, it was useful for keeping track of the progress of the project. However, it was
underutilised - not every task was added to the board and tasks which were done were not always marked as such. This was
probably a contributing factor in the delays and subsequent crunch-time on the frontend. If we were to do another project, the
project board would be better utilised as team members would be more familiar with it and we would know to make an effort
to remind each other to use it.

Github Actions were very useful for continuous testing, ensuring we would immediately know if there was a fault in the code on
Github. We also immediately knew if a pull request caused our ”dev” branch to break. This made fixing errors more efficient.

Our scrum-cycle was modified to use 2-week sprint cycles rather than 1-week. The reason for this is that we found 1-week to be
too regular of an interval to carry out sprint cycle planning, review, and retrospective. Therefore, we decided that it would be
more efficient to extend this cycle to 2 weeks. This sort of change is to be expected when most of the team do not have prior
experience developing websites in a group. Extending our sprints to 2 weeks gave us the flexibility within cycles that was needed
to maintain our focus on developing a site that effectively fulfilled the requirements laid out for it.

Our design document and our plans for the system architecture and databases were very useful in keeping the different components
of our project (frontend, backend, matching system, etc.) compatible and consistent. Therefore, the plan-based aspects of our
methodology were effective.

In conclusion, our development methodology was a sensible choice. Overall, it was effective in allowing us to deliver a website
that met the requirements laid out in the project specification we received and the requirements analysis. While some parts
could have been executed better (such as better use of the Github project board), the overall execution of the methodology was
good.

8.2 Effectiveness of the Team
Overall, the team meshed together very well. The team was primarily split into backend and frontend development teams, with
the project manager moving between roles to provide aid where it was needed. The frontend and backend teams worked on
distinct but codependent sections of the system. Therefore, effective communication between teams was vital to the success of
the project. An example of this is creating the endpoints for the API: the backend team worked on controllers and services to
handle any requests made, and the frontend team needed to create the pages and create the requests for the API. Along with
these endpoints, POSTMAN tests were built to show the format that the data needed to be in to be sent to the backend. Both
teams referred to the system diagrams created in the design document to ensure both sections were compatible.

Due to the scope of the project, there were technologies which were unfamiliar to at least one of the team members in each
group. For this reason, pair programming was used - typically in group meetings. In these meetings, 2 team members would go
through documentation and implement features, ensuring that multiple team members were able to work on those components
independently in the future. A key example of this was where we had begun to implement unit tests for the backend services.
As this was a topic which was relatively new to the backend team, pair programming helped reduce the learning curve as we
were able to work through the problems in tandem.

We chose our project manager as they had the most well-rounded knowledge of the technologies and practices required for a
project of this scale to be effective. Consequently, their assistance could be of use across the entirety of the project, which helped
development run as smoothly as possible. Despite this, there were learning curves for each member which meant sometimes
there were delays and more attention was needed to be able to learn what was required.

8.3 Team Communication
Overall, the team communicated effectively and often met in person to discuss development and issues. However, sometimes
not all team members were available to attend a meeting. Therefore, our main source of online communication was Discord, an
online service allowing for private servers with multiple text, voice, and video channels. It was the best choice for our team for
the following reasons:

19



• The whole team was already familiar with it and used it regularly.
• It allows for various channels to organise our messages.
• It allows for integration with a Github webhook, enabling the whole team to easily monitor changes to our repository.
• It allows for the pinning of relevant messages so that important information (such as meeting notes) is always accessible.

The server was split into the following channels:
#general Used for general communication. Details about the project as a whole, organising group meeting and any

other miscellaneous information relevant for the entire team.
#databases Used for discussing development of the database system. Initial planning, changes, progress, and the

insertion of test data were all discussed in this channel.
#backend Used for discussing our backend configuration. Discussion of the authentication service used and defining

which end points were needed for the system to function effectively both occurred here. Any links to
relevant documentation were posted here, because many parts of the system were new to various members
of the team, and this allowed us to communicate any useful information between us.

#frontend Used for any frontend discussion, covering almost the same points as in backend, however with information
relevant to the frontend team. Furthermore, any discussions on styling and specifics on the pages were
also mentioned here.

#matching-system Used by our data scientist to communicate their progress and developments to the rest of the team, as
well as documenting the workings of the matching system to provide relevant team members with the
information required to integrate their code with the matching system.

#report-writing Used for the discussion on the documents which accompanied the project and the ’Dragons Den’ video.
#github-webhook This channel was used to track any Github updates, allowing the team to see if a change has been made

to a branch that they may be currently working on.
Using these channels allowed clear communication between different members of the team, allowing us to effectively communicate
where relevant, and quickly find any information relevant to them. Along with the pinning of messages, this meant that key
information, links, and messages were always easy to access speeding up the process development.

Using the #general channel, we would aim to organise two to three meetings per week, one for the start of the sprint, and the
others to discuss any other ongoing issues. Despite this, it was often difficult to find a time where all group members were able
to be present due to varying timetables and commitments. To overcome this, a room would be booked where a voice call could
be set up to allow non-present group members to communicate remotely.

8.4 Summary
In conclusion, the team communicated and worked well as a whole. Having two separate teams working in parallel meant that
the development process was far more efficient, and each team member could specialise in the areas they were developing. This
resulted in a team who had an intimate knowledge of the system, which vastly increased the pace of development and the fixing
of errors. The use of pair programming allowed the teams to develop more technical parts of the system in tandem, which
reduced the challenge of developing a complex part of the project alone. Despite this, there were times when both teams came
across issues where the project manager’s assistance was required as he had the best overall knowledge of the system.

Our choice of methodology was sensible, allowing us to have flexibility in our development. Even though the added stress of
sprint planning and sprint retrospectives meant we had to adjust our Scrum cycle from one week to two weeks, having a regular
cycle to follow helped with planning and following the goals set out for the project.

20



References
[1] https://warwick.ac.uk/fac/sci/dcs/teaching/material/cs261/project/, 09/03/2022
[2] Niels Provos, David Mazier A Future Adaptable Password Scheme

https://www.openbsd.org/papers/bcrypt-paper.pdf, 12/03/2022
[3] .NET Foundation About xUnit.net

https://xunit.net/, 06/03/2022
[4] A Future Adaptable Password Scheme

https://www.postman.com/, 13/03/2022
[5] MDN Contributors MVC

https://developer.mozilla.org/en-US/docs/Glossary/MVC, 09/03/2022
[6] Use containers to Build, Share and Run your applications

https://www.docker.com/resources/what-container, 11/03/2022
[7] James Archbold Group Software Development Project

https://warwick.ac.uk/fac/sci/dcs/teaching/material/cs261/project/, 10/03/2022
[8] David Nichols Coloring for Colorblindness

https://davidmathlogic.com/colorblind/#%230018A8-%23FFFFFF-%23C6C8D6, 10/03/2022
[9] MUI https://mui.com/, 11/03/2022
[10] SCRUM https://www.scrum.org/resources/what-is-scrum, 11/03/2022
[11] SPA (Single-page application)

https://developer.mozilla.org/en-US/docs/Glossary/SPA, 10/03/2022
[12] https://owasp.org/www-community/attacks/csrf 08/03/2022
[13] https://reactrouter.com/ 11/03/2022
[14] Gamma, Erich and Helm, Richard and Johnson, Ralph and Vlissides, John “Design Patterns: Elements of Reusable Object-

Oriented Software” 21/10/1994 , Accessed: 23/01/2022

21

https://warwick.ac.uk/fac/sci/dcs/teaching/material/cs261/project/
https://www.openbsd.org/papers/bcrypt-paper.pdf
https://xunit.net/
https://www.postman.com/
https://developer.mozilla.org/en-US/docs/Glossary/MVC
https://www.docker.com/resources/what-container
https://warwick.ac.uk/fac/sci/dcs/teaching/material/cs261/project/
https://davidmathlogic.com/colorblind/#%230018A8-%23FFFFFF-%23C6C8D6
https://mui.com/
https://www.scrum.org/resources/what-is-scrum
https://developer.mozilla.org/en-US/docs/Glossary/SPA
https://owasp.org/www-community/attacks/csrf
https://reactrouter.com/

	Introduction
	Glossary
	System Overview
	Modifications
	Missed and Changed Requirements
	Missed and Changed Non-Functional Requirements
	Missed and Changed Functional Requirements

	Non-Requirement Changes

	Discussion of Development
	Development Tools Used
	Source Control - Github
	Development Environment - Visual Studio
	Language - C#
	Framework - ASP.NET
	Language - TypeScript
	Framework - React
	Containerisation - Docker

	System Components
	Authentication
	Matching System
	Frontend/UI
	Testing
	Backend/API

	Database

	Deployment, Maintenance and Scaling
	Evaluation - Product
	Testing and Validation
	Unit Testing
	Endpoint Testing
	Frontend Blackbox Testing
	Testing Summary

	Matching System and Relationship System
	UI
	Security and Data Protection
	Summary of Product Evaluation

	Evaluation - Process
	Development Methodology
	Effectiveness of the Team
	Team Communication
	Summary


